Last update: 7/15/2024 Curriculum Vitae Earl K. Miller Picower Professor of Neuroscience The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences at the Massachusetts Institute of Technology Contact information Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139 ekmiller@mit.edu ekmillerlab.mit.edu Date出生1962年11月30日教育1990博士普林斯顿大学心理学和神经科学博士学位,1987年硕士心理学和神经科学,普林斯顿大学1985年B.A.summa cum laude with honors in Psychology, Kent State University Current Positions 2003 Picower Professor of Neuroscience, The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology 2014 Co-founder and Chief Scientist, SplitSage 2023 Co-founder, Neuroblox Past Positions 2009-2011 Co-Director, Center of Excellence for Learning in Education, Science, and Technology,国家科学基金会学习中心科学基金会2001 - 2009年,马萨诸塞州科技研究所皮科尔学习与记忆研究所副主任,2002 - 2009年2002 - 2009年总监(推力5),教育,科学和技术学习卓越中心,国家科学基金会科学科学学习中心,1999-2008马萨诸塞州科学科学研究所,1999 - 2002年2002年,马萨诸塞州技术研究所神经科学副教授,大脑和认知科学系副教授,2000 - 2006年2000 - 2006年,大脑和认知科学研究生研究主任,马萨诸塞州技术研究所研究所,1996-1999助理部门,学习和记忆部,Massachusemist,Massachusets of Massachusects of Massachussets of Massachussets secortion of Massachussets,大脑和认知科学,马萨诸塞州理工学院1990 - 1995年,国家心理健康研究所神经心理学实验室研究所,1989- 1990年,普林斯顿大学讲师
EXCO et Associés 代表为 Pierre BURNEL 42 Avenue de la Grande Armée, 75017 PARIS 任命于 2017 年 4 月 25 日。任期于普通股东大会就截至 2022 年 12 月 31 日的财政年度的财务报表作出裁定时届满。 Enside Ernst & Young et Autres 代表为 Pierre JOUANNE Tour First 1, Place des Saisons TSA 14444 92037 PARIS-LA DÉFENSE Cedex 任命于 2017 年 4 月 25 日。任期于普通股东大会就截至 2022 年 12 月 31 日的财政年度的财务报表作出裁定时届满。
许多公司声称已经改变了他们的商业模式,但这些声明更多的是营销炒作而不是现实。推动真正变革的领导人仍然太少。然而!迫切需要将地球的恢复力置于市场机制之上,将可持续性置于商业模式的核心,并协调盈利能力和社会效用。本书借鉴了先锋公司的证词和专家的分析,提供了反思和行动的途径,以重新思考经济模式和组织的思维方式。它还提出了重新审视组织治理、运营活动、流程和文化的主要步骤,并提出了加速转型的建议。
摘要:由于世界人口不断增长,能源需求不断增加,以及对可再生能源替代品多样化的需求日益增加,开发先进材料和技术以有效地将能源直接转化为电能变得至关重要。然而,在成功实施任何数量的竞争能源技术(例如基于硅的太阳能电池以外的技术)之前,仍然存在巨大的科学挑战。目前正在探索的材料、界面和设备架构很难通过集合平均、批量实验方法来探究,因为它们不表现出长程有序或同质性,包含独特的纳米形态特征,并且具有不均匀的化学成分和缺陷化学。此外,这些材料和界面具有动态“反应性”,其性能在使用过程中会显著下降,从而限制了它们的循环寿命和最终的商业化前景。本次演讲将重点介绍我们为开发高分辨率、空间分辨的方法来研究钙钛矿太阳能电池所做的努力。我们开发了一些方法来研究功能设备中不同深度的埋藏界面。这些实验揭示了不同层之间的大量混合[1-3]。另一个设计参数是通过用 Br 部分取代 I - 来调整钙钛矿化学的带隙,以扩大其在串联太阳能电池和 LED 中的应用。剩下需要解决的唯一关键问题是它们在工作条件下的长期稳定性较差,特别是通过分裂成富含 I 和 Br 的相而导致的光化学降解。要充分抑制这一过程,需要彻底了解其潜在现象。在本次报告中,我们将详细研究化学计量和非化学计量混合卤化物 CsPbI 3-x Br x 中的电场诱导和光诱导相变。使用 ToF-SIM 和原位原子力显微镜,可以可视化光照下卤化物相偏析的实时动力学。富含 I 的相主要沿晶界偏析,而晶粒本体仍然富含 Br。我们提出,通过空间分辨成像方法,光生 Pb 0 和 I 3 - 物种被选择性地从晶粒本体排出到晶粒边界界面。 简历:史蒂文森教授于 1997 年在犹他大学亨利怀特教授的指导下获得博士学位。随后,他在西北大学 (1997-2000) 担任博士后;并在 2000 年至 2015 年期间在德克萨斯大学奥斯汀分校担任教授。目前,他正在领导俄罗斯莫斯科一所新的研究生大学 (斯科尔科沃科学技术研究所) 的发展,他曾担任该研究所的教务长、全职教师和能源科学与技术中心 (CEST) 的创始人。2019 年,斯科尔科沃科技大学成为世界上最年轻的大学,也是俄罗斯联邦唯一一所进入自然指数年轻大学前 100 名的大学。史蒂文森的研究兴趣旨在阐明和控制对许多新兴的能源存储和能量转换技术至关重要的固/液界面化学。迄今为止,他已经在这个领域发表了 350 多篇同行评审的出版物、13 项专利和 6 本书的章节。他曾获得美国国家科学基金会 CAREER 奖(2002 年)、南方研究生院会议新学者奖(2004 年)、电分析化学学会青年研究员奖(2006 年)、Kavli 研究员(2012 年)、电分析化学学会 Charles N. Reilley 奖(2021 年)和电化学学会 David C. Grahame 奖(2023 年)。史蒂文森的研究兴趣旨在阐明和控制对许多新兴的能源存储和能量转换技术至关重要的固/液界面化学迄今为止,他已在该领域发表了 350 多篇同行评审出版物、13 项专利和 6 本书章节。他曾获得 NSF CAREER 奖(2002 年)、南方研究生院会议新学者奖(2004 年)、电分析化学学会青年研究员奖(2006 年)、Kavli 研究员奖(2012 年)、电分析化学学会 Charles N. Reilley 奖(2021 年)和电化学学会 David C. Grahame 奖(2023 年)。
1 研究背景与目的· ... ·· ... ·· ... 20 4.4 氨的风险 ·· ... 27 5.3 氨气地上储存设施 ······································ 28 5.4 氨气作为汽车燃料 ··························································· 33 5.5 与船舶安全特性的比较 ···
免责声明 本出版物及其中的材料均按“原样”提供。IRENA 已采取一切合理的预防措施来验证本出版物中材料的可靠性。但是,IRENA 及其任何官员、代理、数据或其他第三方内容提供商均不提供任何明示或暗示的保证,并且对于使用本出版物或此处材料的任何后果,他们不承担任何责任或义务。此处包含的信息不一定代表 IRENA 所有成员的观点。提及特定公司或某些项目或产品并不意味着 IRENA 认可或推荐它们优于未提及的其他类似性质的公司或项目或产品。此处使用的名称和材料的呈现方式并不意味着 IRENA 对任何地区、国家、领土、城市或地区或其当局的法律地位,或对边界或边界的划定发表任何意见。
CCS Carbon capture and storage CCUS Carbon capture, utilisation and storage COAG Council of Australian Governments CSIRO Commonwealth Scientific and Industrial Research Organisation DBNGP Dampier Bunbury Natural Gas Pipeline DC Direct Current DG Dangerous Goods DNI Direct normal irradiance EP Environmental Protection EPA Environmental Protection Authority EPBC Environment Protection and Biodiversity Conservation EPC Engineering, Procurement and Construction EPCM Engineering, Procurement and建筑管理ERIA ERIA经济研究所在东亚和东亚ESG环境,社会和治理饲料前端工程和设计FP FREMANTLE POR GA GA PORT GA GHI GHI GHI全球水平辐照度GIA通用行业GNIC GEALDTON到Narngulu港口Narngulu港口环境HV高压IEA国际能源局ISO国际标准化组织
4. Zhang Q、Grossmann IE。工业需求侧管理的规划和调度:进展与挑战。替代能源与技术。Cham:Springer;2016:383-414。5. Schäfer P、Westerholt HG、Schweidtmann AM、Ilieva S、Mitsos A。基于模型的能源密集型工艺初级平衡市场竞价策略。Comput Chem Eng。2018;120:4-14。6. Baldea M。将化学工艺用作电网级储能设备。引自:Kopanos GM、Liu P、Georgiadis MC 编。能源系统工程进展。Cham:Springer;2017:247-271。7. Mitsos A、Asprion N、Floudas CA 等。新原料和能源工艺优化面临的挑战。 Comput Chem Eng。2018;113:209-221。8. Appl M. 氨。在:Elvers B,编辑。Ullmann 工业化学百科全书。2000 年。https://onlinelibrary.wiley.com/doi/10.1002/14356007.o02_o11。9. Nørskov J、Chen J、Miranda R、Fitzsimmons T、Stack R。可持续氨合成——探索与发现替代、可持续氨生产工艺相关的科学挑战 [Tech. Rep.]。美国能源部;2016 年。https://www.osti. gov/servlets/purl/1283146。访问日期:2017 年 11 月 20 日。10. Demirhan CD、Tso WW、Powell JB、Pistikopoulos EN。通过工艺合成和全局优化实现可持续氨生产。AIChE J。2018;65(7):e16498。11. Guillet N、Millet P。碱性水电解。引自:Godula-Jopek A 编辑。氢气生产:通过电解。Weinheim:威利在线图书馆;2015:117-163。12. Cheema II、Krewer U。电转氨哈伯-博世工艺设计的操作范围。RSC Adv。2018;8(61):34926-34936。13. Reese M、Marquart C、Malmali M 等人。小规模哈伯工艺的性能。 Ind Eng Chem Res。2016;55(13):3742-3750。14. Millet P. PEM 水电解。引自:Godula-Jopek A 编辑。电解制氢。Weinheim:Wiley Online Library;2015:63-114。15. Petipas F、Fu Q、Brisse A、Bouallou C。固体氧化物电解池的瞬态运行。国际氢能杂志。2013;38(7):2957-2964。16. Mougin J. 高温蒸汽电解制氢。氢能纲要。剑桥:爱思唯尔;2015:225-253。 17. Wang G, Mitsos A, Marquardt W. 氨基能源存储系统的概念设计:系统设计和时不变性能。AIChE J。2017;63(5):1620-1637。18. Chen C, Lovegrove KM, Sepulveda A, Lavine AS。用于氨基太阳能热化学能源存储的氨合成系统的设计和优化。Sol Energy。2018;159:992-1002。19. Allman A, Daoutidis P. 风力发电氨发电的优化调度:关键设计参数的影响。Chem Eng Res Des。2017;131:5-15。 20. Allman A、Palys MJ、Daoutidis P. 基于调度的时变运行系统优化设计:风力发电氨案例研究。AIChE J。2018;65(7):e16434。21. Du Z、Denkenberger D、Pearce JM。太阳能光伏供电的现场氨生产用于氮肥。Sol Energy。2015;122:562-568。22. Allman A、Tiffany D、Kelley S、Daoutidis P。结合传统和可再生能源发电的氨供应链优化框架。AIChE J。2017;63(10):4390-4402。23. Palys MJ、Allman A、Daoutidis P。探索模块化可再生能源供电的氨生产的优势:供应链优化研究。Ind Eng Chem Res。2018;58(15):5898-5908。24. Ghobeity A、Mitsos A。太阳能接收器和储存器的最佳设计和运行。J Sol Energy Eng。2012;134(3):031005。 25. Yuan Z, Chen B, Sin G, Gani R. 基于优化的化工过程同步设计和控制的最新进展. AIChE J. 2012;58(6):1640-1659.
前两个相互联系,并与氢的来源相关。Haber-Bosch工艺需要氢,并且可以来自任何地方,包括绿色氢。作为一种实际问题,经济上获得大量氢的最简单方法是通过SMR,它将碳副产品释放到大气中。这是灰色氢,它用于所有氨过程的大部分。它是与氨相关的碳排放的主要来源,但不是唯一的碳排放。因此,实施正确的自动化和测量仪器技术对于缓解策略至关重要,可以帮助提高能源效率并减少排放。