摘要:由于薄膜内激发光和拉曼散射光的干扰,薄膜多层膜的拉曼信号强度随薄膜层厚度非单调变化。这一现象不仅可用于增强拉曼信号,还可用于研究薄膜厚度和光学特性。本文,我们对几种薄膜材料系统的拉曼信号厚度依赖性进行了实验研究,包括蓝宝石上硅 (SOS) 和 SOS 上的氮化硅薄膜,以及在硅基板上制备的多层 MoS 2。将适当缩放的测得强度与从传输矩阵法开发的分析模型进行比较。当激光光斑尺寸足够大于薄膜厚度时,SOS 薄膜具有很好的拟合效果。对于多层 MoS 2,发现来自底层 Si 基板的拉曼信号强度具有极好的拟合效果,而 MoS 2 特征拉曼位移的强度受激光参数和样品方向的影响。这些结果对薄膜计量和光学特性表征具有重要意义。
由于巨大的应用,例如量子光子学,全光子通信,光学计算,芯片计量学和感应,围绕片上非线性光学设备开发的兴趣一直在过去几十年中持续增长。开发有效的芯片非线性光学设备以满足这些应用程序的要求,因此需要新的方向来改善现有的光子方法。最近的研究将片上非线性光学的领域指向了二维分层材料(例如石墨烯,过渡金属二甲化剂和黑色磷)与各种集成平台的混合整合。众所周知的光子芯片设计平台(例如硅,氮化硅)和不同的二维分层材料的组合为更具用途和有效的结构和设备开辟了道路,这具有巨大的潜力,可以释放许多新的可能性。本综述讨论了使用二维材料的不同混合光子整合结构的建模和表征,突出了最新的示例现状,并提出了未来前景的前景。
• AESA 雷达 • 电信 • 仪器仪表 描述 CGY2170YHV/C1 是一款在 X 波段工作的高性能 GaAs MMIC T/R 6 位核心芯片。该产品有三个 RF 端口,包括三个开关、一个 6 位移相器、一个 6 位衰减器和放大器。它的移相范围为 360°,增益设置范围为 31.5 dB。移相器和第一放大器级之间还有一个电压可变衰减器,用于增益控制。它覆盖的频率范围为 8 至 12 GHz,并在 10 GHz 时提供 5.8 dB 的增益。带有串行输入寄存器的片上控制逻辑最大限度地减少了控制线的数量,并大大简化了该设备的控制接口。该芯片采用 0.18 µm 栅极长度 ED02AH pHEMT 技术制造。 MMIC 采用金焊盘和背面金属化,并采用氮化硅钝化进行全面保护,以获得最高水平的可靠性。该技术已针对太空应用进行了评估,并被列入欧洲航天局的欧洲首选部件清单。
摘要 - 由于他们的第一个演示,基于石墨烯的硅波导调制器已演变为在未来的光学互连中采用非常有吸引力的设备。在本文中,我们首先回顾了基于石墨烯的强度调节剂的最先进。考虑了两种重要的设备配置:一种使用单个石墨烯层,通过硅波导本身偏置,另一个使用两个石墨烯层的电容堆栈,可以集成在被动硅和氮化硅波导中。我们还讨论了我们最近在CMOS试点线上完全制造此类设备的工作。在下一节中,我们回顾基于石墨烯的相位调节器。再次,我们比较了两种类型的调节器,涉及单个或双石墨烯层堆栈。此外,我们还提出了新的结果,将集成在标准带状波导上的调节器与集成在插槽波导上的调节器进行比较,从而使光场更加限制。最后,我们基于模拟结果总结了我们的发现以及现场和前景。索引项 - 准烯,调节剂,硅光子学。
LIGENTEC 为量子计算、高级计算、通信、自动驾驶、太空和生物传感器等高科技行业的客户提供专用光子集成电路 (PIC)。LIGENTEC 的技术最初由洛桑联邦理工学院 (EPFL) 开发,已获得专利,与 CMOS 完全兼容。该技术可以生产出性能优于当今最先进技术的 PIC。此外,可以集成有源元件以在芯片上实现更多功能。通过将低损耗氮化硅材料的优势与晶圆级制造和集成相结合,LIGENTEC 解决了当今集成光子学的主要挑战,包括低损耗和短生产周期。LIGENTEC 提供从研发到批量生产的平稳过渡,其低门槛 MPW 服务、定制 PIC 开发和 200 毫米、IATF 16949 认证的 CMOS 代工厂的大批量生产为其提供支持。 LIGENTEC 总部位于瑞士洛桑和法国法兰西岛科尔贝埃松,并通过了 ISO 9001:2015 认证。 www.ligentec.com
作为迅速扩展的2D材料家族,MXENES最近引起了人们的关注。通过开发一种涂层方法,该方法可实现无传输和逐层膜涂层,研究了Ti 3 C 2 t x mxeneFim的非线性光吸收(NOA)。使用Z扫描技术,MXENEFILM的NOA在≈800nm处的特征。结果表明,随着层数从5增加到30的增加,从反向吸收吸收(RSA)转变为可饱和吸收(SA)。值得注意的是,非线性吸收系数的β变化从≈7.1310 2 cm GW 1到在此范围内的2.69 10 2 cm GW 1。也表征了MXENEFIM的功率依赖性NOA,并且观察到β的趋势下降以增加激光强度。最后,在≈1550nm处的2D mxene纤维的NOA的特征是将它们整合到氮化硅波导上,在其中观察到薄膜的SA行为,包括5和10层MXENE,与在≈800nm处观察到的RSA相反。这些结果揭示了2D MXENEFM的有趣的非线性光学性质,突出了它们的多功能性和实现高性能非线性光子设备的潜力。
具有铁电极内化(面向A轴或X切片膜)。这样的X切割调节器的好处是在不构图BTO的情况下轻松地在标准的硅光子过程中制造。波导可以由沉积在BTO层的硅或氮化硅制成,并在沉积的BTO层和电极上形成,以形成Te-Mode EO调节剂[13]。然而,沿晶体的X方向应用的磁场访问R 42在BTO材料中经历了极高的介电常数,通常超过1000。这个高介电常数直接转化为EO调制效率的降低。相比之下,沿z-方向应用的字段访问R 33 Pockels组件经历了典型的BTO介电常数小于60。介电载荷的减少可以抵消EO系数的降低。我们为配置制造了Mach-Zehnder调制器,并比较其制造和调节效率的易度性,并证明SI平台上的BTO适合于与硅光子制造兼容的低功率,小型脚印Mach-Zhhnder调制器兼容。
相对于激光束。图 2a 描绘了 FLW 过程的图形表示。FLW 是一种串行制造技术,与光刻相比可能并不适合大规模生产。然而,它的速度和简单性使其成为至少在量子技术等快速发展领域中规模生产的有吸引力的选择。可以实现的折射率变化很小,因此设备不如硅或氮化硅等其他平台那么小型化。然而,FLW 因允许三维电路布局(图 2b-c)、与玻璃以外的各种材料兼容(促进复合设备的混合集成)以及与标准光纤的低损耗连接而脱颖而出。FLW 只是通过超短激光脉冲与透明材料的非线性相互作用实现的几种微加工工艺之一。另一个例子是飞秒激光烧蚀,它可以精确去除材料,从而形成三维微结构,如图 2a 所示的微沟槽。将飞秒激光烧蚀与激光烧蚀相结合,可以提高集成光子器件的性能,例如可编程光子集成电路 [5],它集成了波导、电可编程干涉仪和空心结构,从而实现了非常低的
抽象定量相成像(QPI)从强度测量中恢复了光的精确波前。可以从这些量化的相移中提取半透明微观体的地形和光密度图。我们使用氮化硅倍曲底金属固有的色差束在相干束束的尖端进行定量相成像。我们的方法利用光谱多路复用来使用彩色摄像头从单个捕获中的多个散焦平面恢复相位。我们的0.5 mm光圈金属量具有28°视图和0.2π相分辨率(空气中的〜0.1λ)显示出可靠的定量相成像能力,用于内窥镜束束的实验。由于光谱功能直接在成像晶状体中编码,因此金属既充当聚焦元件,又是光谱过滤器。使用简单的计算后端的使用将实现实时操作。在据报道的基于金属的QPI中,完全缓解了内窥镜检查相时成像方法的关键局限性。
摘要 - 由于他们的第一个演示,基于石墨烯的硅波导调制器已演变为在未来的光学互连中采用非常有吸引力的设备。在本文中,我们首先回顾了基于石墨烯的强度调节剂的最先进。考虑了两种重要的设备配置:一种使用单个石墨烯层,通过硅波导本身偏置,另一个使用两个石墨烯层的电容堆栈,可以集成在被动硅和氮化硅波导中。我们还讨论了我们最近在CMOS试点线上完全制造此类设备的工作。在下一节中,我们回顾基于石墨烯的相位调节器。再次,我们比较了两种类型的调节器,涉及单个或双石墨烯层堆栈。此外,我们还提出了新的结果,将集成在标准带状波导上的调节器与集成在插槽波导上的调节器进行比较,从而使光场更加限制。最后,我们基于模拟结果总结了我们的发现以及现场和前景。索引项 - 准烯,调节剂,硅光子学。