大约是二氧化碳(CO2)全球变暖潜力的大约300倍,一氧化二氮(N2O)在2020年贡献了7%的美国温室气体排放。N2O排放的74%来自农业肥料的应用。 为了解决这种有害排放的来源,由爱荷华州立科学技术大学(ISU)领导的NSF研究基础设施改进轨道2集中的既定计划旨在刺激竞争性研究(EPSCOR)合作奖,召集了一支来自ISU和WICHITA州立大学的多学科研究的多学科团队,以探索和witherabiriiz forder forder forfor forder forder forfor forfor forfor forfore forfor forfor forfor forfor forfor forfor forfor forfor forfor forfor forfor forfor nitor nitor soft。致力于N2O和CO2意见的农业和牧场。 该EPSCOR项目的成功将使以可再生风能和太阳能提供动力的电动制造系统,以生产绿色的氮肥与消耗非可再生化石能源的当前热量制造过程的根本不同,从而促使农业对气候变化的影响。 捕获废物氮和二氧化碳还将有助于保护中西部地区的生态和环境系统免受现有的不可持续实践的压力,从而确保长期的经济繁荣和繁荣。N2O排放的74%来自农业肥料的应用。为了解决这种有害排放的来源,由爱荷华州立科学技术大学(ISU)领导的NSF研究基础设施改进轨道2集中的既定计划旨在刺激竞争性研究(EPSCOR)合作奖,召集了一支来自ISU和WICHITA州立大学的多学科研究的多学科团队,以探索和witherabiriiz forder forder forfor forder forder forfor forfor forfor forfore forfor forfor forfor forfor forfor forfor forfor forfor forfor forfor forfor forfor nitor nitor soft。致力于N2O和CO2意见的农业和牧场。该EPSCOR项目的成功将使以可再生风能和太阳能提供动力的电动制造系统,以生产绿色的氮肥与消耗非可再生化石能源的当前热量制造过程的根本不同,从而促使农业对气候变化的影响。捕获废物氮和二氧化碳还将有助于保护中西部地区的生态和环境系统免受现有的不可持续实践的压力,从而确保长期的经济繁荣和繁荣。
化石天然气的蒸汽甲烷改革(SMR)或煤气的气体;这些分别占全球氨产能的72%和22%。1其他用于氨产生的原料包括燃料油(4%)和石脑油(1%)。6氨产量约占全球化石能源使用的2%,每年产生超过4.2亿吨的CO 2,占全球Anthro-Onthro-Pogenic CO 2排放量的1.2%。1,5为了使氨部门脱碳,从可更新的资源和工业副产品产生的替代氨产生途径越来越兴趣。使用当前的技术,可以使用可再生电力作为空气分离和水电的主要能源来产生无碳资源(水和空气)的氨是可行的。5,7,例如,氮肥制造商Yara最近建造的一家商业植物,证明了将可再生用电分解为H 2和O 2,以及Haber - Bosch(HB)反应将H 2和N 2结合起来,以产生低碳氨。8 Morgan等。 对风能氨的生产进行了两项技术经济分析,以证明该过程的经济可行性。 3,78 Morgan等。对风能氨的生产进行了两项技术经济分析,以证明该过程的经济可行性。3,7
摘要:高氮利用效率(NUE)或耐低氮的作物育种被认为是减少氮肥过量使用造成的成本、碳足迹和其他环境问题的理想解决方案。作为谷物作物的模型植物,大麦具有许多优点,包括适应性好、生育期短、抗逆性强或耐逆性强。因此,提高大麦 NUE 的研究不仅有利于氮高效大麦育种,而且还将为其他谷物作物的 NUE 改良提供参考。本文总结了大麦对氮营养反应的理解、NUE 或耐低氮性的评估、与提高 NUE 相关的 QTL 定位和基因克隆以及氮高效大麦育种方面的最新进展。此外,还介绍了可用于揭示大麦 NUE 的分子机制或提高大麦 NUE 育种的几种生物技术工具,包括 GWAS、组学和基因编辑。本文还讨论了揭示提高其他作物氮利用效率的分子机制的最新研究思路,从而为提高大麦的氮利用效率提供了更好的理解,并为该领域的未来研究提供了一些方向。
农业和合作社部长Narumon Pinyosinwat周一表示,泰国的生产是泰国以减少排放为目标的部门之一,以实现其到2050年的目标。农业将其列为该国第二高的温室气体发射极端。水稻种植的甲烷占泰国农业部门排放量的40%。narumon说,促使更环保种植覆盖了超过490万个水稻耕种和超过7000万种农田。稻米部已经实施了一种湿干稻种植方法,重点是减少甲烷排放的水。该部门正在帮助22个省的约3,300名农民实施这种耕种方法。潮湿和干燥的种植可以减少温室气体排放,减轻气候变化和PM2.5空气污染,促进向低碳经济的过渡并增加农民的收入。农业和合作社部也在促进微生物,而不是燃烧作为清除稻草和茬的一种方式,从而减轻环境影响并提高土壤的生育能力。“目前,我们可以使用潮湿和干稻种植,氮肥和微生物燃烧作物燃烧,在混乱的Phraya河盆地中生产1000万个低碳米饭。”
摘要:氮是植物生长的重要营养素。但是,过度使用氮肥不仅增加了生产成本,而且对环境产生了负面影响。这项研究的目的是在不同的氮施用速率下量化两个马铃薯品种中每个生长阶段的源清单特征和长度。这清楚地表明了氮效果品种的源汇协调特性以及高氮的使用效率(NUE)的源链接协调机制。现场实验是在2019年,2020年和2021年进行的,使用分套件设计,其氮施用速率为(0; 150 kg·ha-1; 300 kg·ha-1)作为主要情节和品种(j,氮,氮的范围,nitrogen-nitrogen-nitrogen-nitrogen-nitraint yousifient younjiaiafient youjiaiafient younjiaiafient youjiaiafient youjiaiafientifife)。结果表明,在300 kg·ha -1时jizhang 12的产量和nue平均比Youjia 70的收益率分别高90.73%和75.15%。jizhang 12的NUE和氮利用率平均增加,n应用降低为68.66%,24.53%降低,高于Youjia 70的NUE和氮效率,高于62.89%和10.86%的Youjia 70。对源和下沉的定量分析表明,jizhang 12的较高源和水槽容量分别为23.45 g和51.85 g,最大的源和水槽活性平均为0.28 g·植物-1·d -1·D - 1
Abstract: Microbial-driven processes, including nitrification and denitrification closely related to soil nitrous oxide (N 2 O) production, are orchestrated by a network of enzymes and genes such as amoA genes from ammonia-oxidizing bacteria ( AOB ) and archaea ( AOA ), narG (nitrate reductase), nirS and nirK (nitrite还原酶)和NOSZ(N 2 O还原酶)。但是,气候因素和农业实践如何影响这些基因和过程,因此,土壤N 2 O排放尚不清楚。在这项全面的综述中,我们定量评估了这些因素对氮过程和土壤N 2 O使用大分析(即Meta-Meta-Analysis)的影响。结果表明,全球变暖增加了土壤硝化和反硝化率,导致土壤N 2 O排放的总体增加159.7%。升高的CO 2刺激了NIRK和NIRS,土壤N 2 O的排放量大幅增加了40.6%。氮肥扩增了NH 4 + -n和NO 3 - -N含量,促进AOB,NIRS和NIRK,并导致土壤N 2 O排放量增加153.2%。生物炭增强的AOA,NIR和NOSZ的应用,最终将土壤N 2 O排放降低15.8%。暴露于微塑料大多会刺激反硝化过程,而土壤n 2 O排放量增加了140.4%。这些发现为氮过程的机械基础和土壤N 2 O排放的微生物调节提供了宝贵的见解。
摘要:有益的微生物对于改善各种压力下的作物适应和生长至关重要。它们可以增强养分的吸收,改善植物免疫反应,并帮助植物耐受应激,例如干旱,盐度和热量。任何农作物的产量潜力都受到其相关微生物组的影响以及它们在不同的压力环境下改善生长的潜力。因此,了解植物 - 微生物相互作用的机制至关重要和令人兴奋。玉米(Zea Mays L.)除了小麦和米饭外,是全球主要的主食之一。玉米在全球范围内也是一种工业作物,占其用于饲料,淀粉和生物燃料行业的生产的83%。玉米需要显着的氮肥才能实现最佳生长和产量。玉米植物非常容易受到热,盐度和干旱胁迫,并且需要创新的方法来减轻环境压力的有害影响并减少化学肥料的使用。本综述总结了我们当前对玉米植物与特定微生物之间的利益相互作用的理解。这些有益的微生物提高了植物对压力和提高生产率的弹性。例如,它们调节电子传输,下调过氧化氢酶和上调抗氧化剂。我们还回顾了植物生长促进根瘤菌(PGPR)在增强玉米胁迫耐受性方面的作用。此外,我们还探讨了这些微生物在玉米生产中的应用,并确定了需要解决的主要知识差距,以充分利用有益的微生物的潜力。
同行评审的科学期刊出版物(48)1。Braun,R。C.,Mandal,P.,Nwachukwu,E。和Stanton,A。(2024)。草皮草在环境保护中的作用及其对人类的好处:30年后。作物科学,http://doi.org/10.1002/csc2.21383 2。McNally,B.C.,Chhetri,M.,Patton,A.J.,Liu,W.,Hoyle,J.A.,Brosnan,J.T.,Richardson,M.D.,Bertucci,M.B.,Braun,R.C。,&Fry,J.D。(2024)。 优化“ Meyer” Zoysiagrass Seedhead抑制的Ethephon应用计时。 作物科学,1-13。 https://doi.org/10.1002/csc2.21350 3。 Braun,R。C.和Patton,A。J. (2024)。 对凉爽季节草种中水槽压力的增长反应。 草和饲料科学。 1–12。 https://doi.org/10.1111/gfs.12655 4。 Braun,R。C.,Watkins,E.,Hollman,A。 B.,&Patton,A。J. (2023)。 评估凉爽季节草皮种类的肥料和农药输入需求。 作物科学,63,3079-3095。 https://doi.org/10.1002/csc2.21046 5。 Chandra,A.,Genovesi,A.,Fry,J.,Patton,A.,Meeks,M.,Braun,R.,Xiang,M.,Chhetri,M。,&Kennelly,M。(2023)。 'Dalz 1701',第三代种间间杂志杂种。 植物注册杂志,17,499–511。 http://dx.doi.org/10.1002/plr2.20319 6。 Braun,R。C.,Straw,C.M.,Soldat,D.J.,Bekken,M.A.H.,Patton,A.J.,Lonsdorf,E。V.,&Horgan,B。P.(2023)。 减少草皮系统中投入和排放的策略。 9,E20218。 A.A.,Brosnan,J.T.,Richardson,M.D.,Bertucci,M.B.,Braun,R.C。,&Fry,J.D。(2024)。优化“ Meyer” Zoysiagrass Seedhead抑制的Ethephon应用计时。作物科学,1-13。https://doi.org/10.1002/csc2.21350 3。Braun,R。C.和Patton,A。J.(2024)。对凉爽季节草种中水槽压力的增长反应。草和饲料科学。1–12。https://doi.org/10.1111/gfs.12655 4。Braun,R。C.,Watkins,E.,Hollman,A。B.,&Patton,A。J.(2023)。评估凉爽季节草皮种类的肥料和农药输入需求。作物科学,63,3079-3095。 https://doi.org/10.1002/csc2.21046 5。Chandra,A.,Genovesi,A.,Fry,J.,Patton,A.,Meeks,M.,Braun,R.,Xiang,M.,Chhetri,M。,&Kennelly,M。(2023)。 'Dalz 1701',第三代种间间杂志杂种。 植物注册杂志,17,499–511。 http://dx.doi.org/10.1002/plr2.20319 6。 Braun,R。C.,Straw,C.M.,Soldat,D.J.,Bekken,M.A.H.,Patton,A.J.,Lonsdorf,E。V.,&Horgan,B。P.(2023)。 减少草皮系统中投入和排放的策略。 9,E20218。 A.Chandra,A.,Genovesi,A.,Fry,J.,Patton,A.,Meeks,M.,Braun,R.,Xiang,M.,Chhetri,M。,&Kennelly,M。(2023)。'Dalz 1701',第三代种间间杂志杂种。植物注册杂志,17,499–511。http://dx.doi.org/10.1002/plr2.20319 6。 Braun,R。C.,Straw,C.M.,Soldat,D.J.,Bekken,M.A.H.,Patton,A.J.,Lonsdorf,E。V.,&Horgan,B。P.(2023)。 减少草皮系统中投入和排放的策略。 9,E20218。 A.http://dx.doi.org/10.1002/plr2.20319 6。Braun,R。C.,Straw,C.M.,Soldat,D.J.,Bekken,M.A.H.,Patton,A.J.,Lonsdorf,E。V.,&Horgan,B。P.(2023)。 减少草皮系统中投入和排放的策略。 9,E20218。 A.Braun,R。C.,Straw,C.M.,Soldat,D.J.,Bekken,M.A.H.,Patton,A.J.,Lonsdorf,E。V.,&Horgan,B。P.(2023)。减少草皮系统中投入和排放的策略。9,E20218。 A.9,E20218。A.作物,草料和草皮管理。https://doi.org/10.1002/cft2.20218 7。Yue,C.,Lai,Y.,Watkins,E.,Patton,A。,&Braun,R。(2023)。 一种采用新技术障碍的行为方法:低输入草皮草的案例研究。 农业和应用经济学杂志,第55卷,第72-99页。 https://doi.org/10.1017/aae.2023.7 8。 Braun,R。C.,Courtney,L。E.,&Patton,A。J. (2023)。 种子形态,发芽和幼苗的活力特征和其他凉爽的草皮种类。 作物科学,63,1613–1627。 https://doi.org/10.1002/csc2.20936 9。 Hong,M.,Zhang,Y.,Braun,R.C。和Bremer,D。J. (2023)。 使用基于过程模型的C 4草皮系统中一氧化二氮排放和全球变暖潜力的模拟。 欧洲农艺学杂志,142,126668。https://doi.org/10.1016/j.eja.eja.2022.126668 10。 Braun,R。C.,Patton,A。J.,Chandra,A. 开发了上过渡区和类似气候的冬季强壮,质感的Zoysiagrass杂种。 作物科学,62,2486–2505。 https://doi.org/10.1002/csc2.20834 11。 Braun,R.C.,Bremer,D.J.,Ebdon,J.S.,Fry,J.D。,&Patton,A。J. (2022)。 审查凉爽的草皮用水和要求:ii。 对干旱压力的反应。 作物科学,62,1685–1701。 (2022)。Yue,C.,Lai,Y.,Watkins,E.,Patton,A。,&Braun,R。(2023)。一种采用新技术障碍的行为方法:低输入草皮草的案例研究。农业和应用经济学杂志,第55卷,第72-99页。https://doi.org/10.1017/aae.2023.7 8。Braun,R。C.,Courtney,L。E.,&Patton,A。J. (2023)。 种子形态,发芽和幼苗的活力特征和其他凉爽的草皮种类。 作物科学,63,1613–1627。 https://doi.org/10.1002/csc2.20936 9。 Hong,M.,Zhang,Y.,Braun,R.C。和Bremer,D。J. (2023)。 使用基于过程模型的C 4草皮系统中一氧化二氮排放和全球变暖潜力的模拟。 欧洲农艺学杂志,142,126668。https://doi.org/10.1016/j.eja.eja.2022.126668 10。 Braun,R。C.,Patton,A。J.,Chandra,A. 开发了上过渡区和类似气候的冬季强壮,质感的Zoysiagrass杂种。 作物科学,62,2486–2505。 https://doi.org/10.1002/csc2.20834 11。 Braun,R.C.,Bremer,D.J.,Ebdon,J.S.,Fry,J.D。,&Patton,A。J. (2022)。 审查凉爽的草皮用水和要求:ii。 对干旱压力的反应。 作物科学,62,1685–1701。 (2022)。Braun,R。C.,Courtney,L。E.,&Patton,A。J.(2023)。种子形态,发芽和幼苗的活力特征和其他凉爽的草皮种类。作物科学,63,1613–1627。https://doi.org/10.1002/csc2.20936 9。Hong,M.,Zhang,Y.,Braun,R.C。和Bremer,D。J. (2023)。 使用基于过程模型的C 4草皮系统中一氧化二氮排放和全球变暖潜力的模拟。 欧洲农艺学杂志,142,126668。https://doi.org/10.1016/j.eja.eja.2022.126668 10。 Braun,R。C.,Patton,A。J.,Chandra,A. 开发了上过渡区和类似气候的冬季强壮,质感的Zoysiagrass杂种。 作物科学,62,2486–2505。 https://doi.org/10.1002/csc2.20834 11。 Braun,R.C.,Bremer,D.J.,Ebdon,J.S.,Fry,J.D。,&Patton,A。J. (2022)。 审查凉爽的草皮用水和要求:ii。 对干旱压力的反应。 作物科学,62,1685–1701。 (2022)。Hong,M.,Zhang,Y.,Braun,R.C。和Bremer,D。J.(2023)。使用基于过程模型的C 4草皮系统中一氧化二氮排放和全球变暖潜力的模拟。欧洲农艺学杂志,142,126668。https://doi.org/10.1016/j.eja.eja.2022.126668 10。Braun,R。C.,Patton,A。J.,Chandra,A. 开发了上过渡区和类似气候的冬季强壮,质感的Zoysiagrass杂种。 作物科学,62,2486–2505。 https://doi.org/10.1002/csc2.20834 11。 Braun,R.C.,Bremer,D.J.,Ebdon,J.S.,Fry,J.D。,&Patton,A。J. (2022)。 审查凉爽的草皮用水和要求:ii。 对干旱压力的反应。 作物科学,62,1685–1701。 (2022)。Braun,R。C.,Patton,A。J.,Chandra,A.开发了上过渡区和类似气候的冬季强壮,质感的Zoysiagrass杂种。作物科学,62,2486–2505。https://doi.org/10.1002/csc2.20834 11。Braun,R.C.,Bremer,D.J.,Ebdon,J.S.,Fry,J.D。,&Patton,A。J.(2022)。审查凉爽的草皮用水和要求:ii。对干旱压力的反应。作物科学,62,1685–1701。(2022)。https://doi.org/10.1002/csc2.20790 12。 Braun,R.C.,Bremer,D.J.,Ebdon,J.S.,Fry,J.D。,&Patton,A。J. 审查凉爽的草皮用水和要求:I。蒸散量和对赤字灌溉的反应。 作物科学,62,1661–1684。 https://doi.org/10.1002/csc2.20791 13。 Braun,R。C.,Watkins,E.,Hollman,A。 B.,Mihelich,N。T.和Patton,A。J. (2022)。 低输入冷季草皮草皮混合物的管理,收获和存储特性。 农艺学杂志,114,1752–1768。 https://doi.org/10.1002/agj2.21051 14。 Braun,R。C.和Patton,A。J. (2022)。 物种,三叶草包含和氮肥对细羊茅类分类单元的抗抗拉力强度的影响。 农艺学杂志,114,1705–1716。 https://doi.org/10.1002/agj2.21039 15。 Braun,R。C.,Braithwaite,E。T.,Kowalewski,A。R.,Watkins,E.,Hollman,A。 B.,&Patton,A。J. (2022)。 氮肥和三叶草包含对精美羊茅类群的建立的影响。 作物科学,62,947–957。 https://doi.org/10.1002/csc2.20704 16。 Braun,R。C.和Patton,A。J. (2022)。 多年生黑麦草(Lolium Perenne)culm和草坪上的花序密度:氮肥的影响,剥皮时机和高度。 作物科学,62,489–502。 https://doi.org/10.1002/csc2.20665 17。 Braun,R。C.,Bremer,D。J.和Hoyle,J。 (2022)。 在干旱压力期间模拟草皮草的流量:ii。https://doi.org/10.1002/csc2.20790 12。Braun,R.C.,Bremer,D.J.,Ebdon,J.S.,Fry,J.D。,&Patton,A。J.审查凉爽的草皮用水和要求:I。蒸散量和对赤字灌溉的反应。作物科学,62,1661–1684。https://doi.org/10.1002/csc2.20791 13。Braun,R。C.,Watkins,E.,Hollman,A。B.,Mihelich,N。T.和Patton,A。J.(2022)。低输入冷季草皮草皮混合物的管理,收获和存储特性。农艺学杂志,114,1752–1768。https://doi.org/10.1002/agj2.21051 14。Braun,R。C.和Patton,A。J.(2022)。物种,三叶草包含和氮肥对细羊茅类分类单元的抗抗拉力强度的影响。农艺学杂志,114,1705–1716。https://doi.org/10.1002/agj2.21039 15。Braun,R。C.,Braithwaite,E。T.,Kowalewski,A。R.,Watkins,E.,Hollman,A。B.,&Patton,A。J.(2022)。氮肥和三叶草包含对精美羊茅类群的建立的影响。作物科学,62,947–957。https://doi.org/10.1002/csc2.20704 16。 Braun,R。C.和Patton,A。J. (2022)。 多年生黑麦草(Lolium Perenne)culm和草坪上的花序密度:氮肥的影响,剥皮时机和高度。 作物科学,62,489–502。 https://doi.org/10.1002/csc2.20665 17。 Braun,R。C.,Bremer,D。J.和Hoyle,J。 (2022)。 在干旱压力期间模拟草皮草的流量:ii。https://doi.org/10.1002/csc2.20704 16。Braun,R。C.和Patton,A。J.(2022)。多年生黑麦草(Lolium Perenne)culm和草坪上的花序密度:氮肥的影响,剥皮时机和高度。作物科学,62,489–502。https://doi.org/10.1002/csc2.20665 17。Braun,R。C.,Bremer,D。J.和Hoyle,J。(2022)。在干旱压力期间模拟草皮草的流量:ii。土壤水含量,土壤压实和生根。国际草皮草研究杂志,第14卷,第516-527页。 https://doi.org/10.1002/its2.62
AML/CFT/CPF 反洗钱、打击资助恐怖主义和打击扩散融资 ASYCUDA 海关数据自动化系统 ATI 特立尼达和多巴哥全指数 Atlantic 特立尼达和多巴哥大西洋液化天然气公司 ATM 平均到期时间 AUM 资产管理规模 B2B 企业对企业 BD 巴巴多斯元 BEPS 税基侵蚀 利润转移 BERT 巴巴多斯经济改革与转型 BOLT 建设、拥有、租赁和转让 BPM6 国际收支和国际投资头寸手册,第六版 BPTT BP 特立尼达和多巴哥 BTU 英热单位 CA 主管当局 CAD 加元 CAF 安第纳开发银行 - 拉丁美洲开发银行 CAL 加勒比航空有限公司 CARIBCAN 英联邦加勒比和加拿大自由贸易协定 CARICOM 加勒比共同体 CariCRIS 加勒比信息和信用评级服务有限公司 CARIFORUM 加勒比论坛 CARTAC 加勒比地区技术援助中心 CBERA加勒比海盆地经济复苏法案 CBTPA 美国-加勒比海盆地贸易伙伴关系法案 CBTT 特立尼达和多巴哥中央银行 CCB 资本保护缓冲 CET 普通股本层级 CFATF 加勒比金融行动特别工作组 CGCL 加勒比天然气化学有限公司 CIF CLICO 投资基金 CIS 集合投资计划 CLI 交叉上市指数 CLICO 殖民人寿保险公司(特立尼达)有限公司 CNC 加勒比氮肥有限公司 CNY 人民币
用二苯胺(DPA)有效地防止了富士苹果中的CO 2-损伤的发展(照片3)。然而,对某些市场的后化学使用限制促使研究开发了预防CO 2 -INJURY的替代性非化学程序。既有生产和后练习实践,可以减少CO 2伤害的发展。农作物负荷管理和最少的氮肥使用可以使水果以红色良好的背景颜色和最少的水氧化量较早收获。延迟Ca(1至1.5%O 2,0.5至1%CO 2)或CA期间的CO 2累积会降低CO 2 -INJURY的发生率。与快速CA相比,CA-和CO 2 -delay程序可能导致某些衰老(0.5至1磅)和酸度(0.5至1磅)和酸度(0.02%至0.05%);但是,与RA存储相比,质量损失不足以消除CA的好处。根据季节,有效减少CO 2 -INJURY所需的CO 2延迟期可能会有所不同(1至3个月)。CA或CO 2延迟应尽可能短,以保持CA对果实质量的有益影响。收获后仍应及时冷却水果。对于以良好的成熟度收获的富士苹果(淀粉3至4,略微至中度水路),收获后10至14天的Ca延迟10至14天,或者在收获后延迟了CO 2的延迟一个月。如果在高级成熟度上收获(淀粉指数高于5),并且仅在收获后2个月内将CO 2延迟至少4周,或者CO 2在CA下延迟至少4周时,才应将水果储存在CA中,仅在CA中储存低于0.5%。