研究人员反复强调了我们如何迫切地减少大量氮肥的消耗,以支持农业生产力并保持可持续的生态系统。使用壳聚糖(CS)作为缓慢释放的载体被认为是降低合成肥料和提高作物生产率的潜在工具。因此,在随机完整的块设计中布置了两个现场实验,以研究七种治疗方法的影响,包括合成肥料和基于壳聚糖的NPK纳米结构(CH/NPS-NPK)的外源应用对生产率,生产力和营养特征的增长,生产率和营养特征的全球策略作物的2022222222年季节和2023年的2023年季节的营养特征。实验处理为:T1 =全建议合成NPK(推荐尿素,超磷酸,硫酸钾;对照治疗),T2 = 70%T1+ CH/ NPS-NPK 100 ppm,T3 = 70%,T1+ CH/ NPK 200 ppm的T1+ CH/ NPK 200 ppm,T5 = 70%PPM = 70%= 70%ppm,TPM的TPM, T1+ CH/NPS-NPK 100 ppm,T6 = T1+ CH/NPS-NPK 200 ppm的30%,T7 = T1+ CH/NPS-NPK的30%300 ppm。结果表明,T4(即推荐的NPK+ CH/NPS-NPK 300 ppm的70%)和T1(完全推荐的合成NPK)导致了与其他处理相比,水稻的最高和最显着的生长和最重要的大米特征以及营养谷物含量。因此,将70%的推荐NPK与CH/NPS-NPK 300 ppm结合在一起,作为一种外源应用,可以是将合成NPK肥料降低30%的明智选择,而在帕迪领域中,在应用完整推荐的NPK时,在不产生生长,产量特征或营养谷物方面会大幅下降,而不会产生大幅下降。
联邦决策者正在追求昂贵的气候控制和排放政策,这些政策在欧洲大为失败,而美国农场和家庭将被要求为其付款。特朗普总统从意识形态的巴黎气候协议中撤回了美国的负担,美国为减少碳排放量减少了负担,理论上旨在达到无法达到无法达到的排放目标。总统拜登(Biden)在任职的第一天重新加入了协议,从那以后,他的政府通过法规和立法追求了“净零”碳排放的怪异目标。在将美国推荐给零净气候控制议程后,总统和国会通过降低通货膨胀法案恢复了曾经被运输的“绿色新交易”的重大误导性特征。然后,拜登政府使用行政权来限制石油和天然气供应,使化学原料购买和生产更昂贵,并邀请证券交易委员会要求新的“环境,社会,治理”或ESG报告以跟踪从农场到桌子的碳发射。这些联邦倡议和要求将在这里证明昂贵且经济上的破坏性,就像它们在欧洲一样。为了更好地欣赏美国农场和家庭可能会为拜登政府的净零政策和目标支付的真正成本,七叶树学院的经济研究中心开发了一个模型玉米农场,必须由政府的新碳排放规则发挥作用。如预期的那样,农场的运营成本都大大增加。,丙烷与谷物干燥机和加热谷仓所需的一样。卡车,拖拉机和联合收割机所需的柴油燃料变得更加昂贵。和氮肥的价格也需要上升。然后,经济模式追溯了这些额外的运营成本如何影响美国消费者的食品价格。再次上涨,以补偿农民的政府行动。结果是可预测的,毫不奇怪,但是许多美国决策者似乎不愿解决甚至承认它们。必须改变,否则美国将面临可怕的经济后果。
植物 - 微生物相互作用的领域正在迅速发展,随着生物技术和生物工程的进步,我们正处于释放农业,环境可持续性和健康科学方面的新机会。微生物生物技术与植物系统的整合具有革新作物生产力,营养效率,病原体抗性和气候弹性的潜力。随着研究的继续,生物技术干预措施是针对全球挑战的创新解决方案,例如粮食安全,生态系统退化和可持续的能源生产。本社论探讨了植物 - 微生物生物技术的最新进步,重点是农业中的微生物应用,生物工程突破以及这种动态场的未来轨迹。微生物群落对于植物健康和发育至关重要,并与根际中的植物根相互作用,以促进营养摄取,增强胁迫耐受性并预防病原体。有益的植物相关微生物,例如磷酸盐溶解的微生物(PSM)和氮固定细菌,正在越来越多地探索以减少对化学肥料的依赖并促进可持续的农业(Jain等人。; Pang等。)。磷是植物生长的关键元素,但是由于它倾向于与钙,铁或铝形成不溶性化合物,因此在土壤中通常无法使用。psms通过分泌溶解这些结合化合物的有机酸来增强磷的可用性,从而使磷可供植物进入(Pang等人。)。)。)。芽孢杆菌,假单胞菌和曲霉物种可以显着增加磷的摄取并改善植物的生长和产量(Jain等人。共生细菌,例如根瘤菌,勃arad骨和硫唑群,通过将大气氮转化为氨可以使用,在氮固定中起着至关重要的作用,植物可以使用。这种自然过程减少了对合成氮肥的需求,从而促进了农业和环境可持续性(Pang等人。将这种微生物功能整合到农业系统中可以提高作物产量,减少化学投入并发展弹性的农业系统。
氮(N)是作物生长和产量所需的主要大量营养素之一。这种养分特别限制了小麦的产量,在根区土壤地层中具有低N的干燥和肥沃的农业生态学中。此外,印度和南亚的大多数农民都很狭窄至边际,投资昂贵的氮肥能力微不足道。因此,巨大的需要识别有效使用氮的线路。A set of 50 diverse wheat geno- types consisting of indigenous germplasm lines (05), cultivars released for commercial culti- vation (23) and selected elite lines from CIMMYT nurseries (22) were evaluated in an alpha- lattice design with two replications, a six-rowed plot of 2.5m length for 24 agro morphologi- cal, physiological and NUE related traits during two consecutive crop seasons in在两个不同的N水平的50%-n50(T1)和100%-N100(T2)的N-耗尽的精度域,建议的N,即100 kg/ha。方差分析显示,所有研究性状的基因型之间存在显着的遗传变异。在n含量降低的水平下观察到约11.36%的屈服降低。观察到了NUE性状和产量成分性状之间的显着相关性,这表明N重新启动向晶粒的关键作用在提高产量水平中。在基于低N水平下的屈服能力下鉴定的N-启发性基因型之间,UASBW13356,UASBW13358,UASBW13354,UASBW13357和KRL1-4显示出对N应用的固有基因型可塑性。具有更高产量和高中性鼻子的基因型可以用作边缘农业生态生物的N有效基因型的父母。从当前研究中确定的低N耐受性基因型可以进一步用于鉴定负责NUE的基因组区域及其在小麦育种计划中的部署。在不同的氮水平下,印度和全球来源(主要是CIMMYT)的24个特征的全面数据对于支持NUE的育种应该很有用,因此对印度和南亚的小型和边缘农民提供了很大的帮助。
TCP基因家族成员在植物生长和发育中发挥了多种功能,并以在该家族中发现的第一个三个家庭成员的命名,即TB1(Teosinte分支1),细胞增多菌(CYC)和增殖的细胞因子1/2(PCF1/2)。氮(N)是饲料产量的关键元素;但是,氮肥的过度应用可以增加农业生产成本和环境压力。因此,发现低N耐受基因的发现对于上燕麦种质和生态保护的遗传改善至关重要。燕麦(Avena sativa L.)是世界上的主要草饲料之一,但尚未对TCP基因的全基因组分析及其在低氮应激中的作用。这项研究使用生物信息学技术确定了燕麦TCP基因家族成员。它分析了他们的系统发育,基因结构分析和表达模式。结果表明,ASTCP基因家族包括49个成员,大多数ASTCP编码的蛋白是中性或酸性蛋白。系统发育树将ASTCP基因家族成员分类为三个亚家族,并且每个亚科具有不同的保守结构域和功能。此外,在ASTCP基因的启动子中检测到了多个与非生物应激,光反应和激素反应有关的启动子。从燕麦鉴定出的49个ASTCP基因在18个燕麦染色体上分布不均。这项研究为其他OAT属中TCP基因家族的未来深入研究提供了重要的基础,并揭示了改善基因利用率的新研究思想。实时定量聚合酶链反应(QRT-PCR)的结果表明,在低氮应激下,ASTCP基因在各种组织中具有不同的表达水平,这表明这些基因(例如ASTCP01,ASTCP03,ASTCP2222222222222222,和ASTCP38)在增长和发展中具有多个生长。总而言之,这项研究分析了ASTCP基因家族及其在全基因组水平低氮应激中的潜在功能,这为进一步分析燕麦中ASTCP基因的功能奠定了基础,并为探索燕麦中出色胁迫耐受性基因的理论基础提供了理论基础。
尿素特性是一种颗粒状的,白色的,高可溶的肥料,在所有氮肥中含有最高的氮。它通过土壤或叶面施用提供了植物的氮需求。其化学公式为CO(NH 2)2,包含46%N(氮)。由于它以NH 2的形式含有碳(C)和氮,因此被称为有机氮来源。尽管它高度溶于水,但其氮(NH 2)含量不能直接被植物根部吸收。为了使其氮含量可用于植物,在土壤中的尿素酶(在许多线圈微生物中发现)应通过酶促反应将尿素转化为尿素(NH 4)氮形成。这就是原因;土壤温度和微生物在土壤中的活性很重要。因此,尿素肥料被认为是缓慢释放的肥料。农业用途,为了提供足够的氮,尿素对几乎所有农作物和烟草的施肥非常有用。当未向植物提供足够的氮时,植物的生长会减速;叶变黄,产量降低。尿素具有独特的特性,可以在所有植物发育阶段中使用。除了在播种过程中或在播种之前或在播种之前或在播种之前的起动器(碱)肥料外,还可以将尿素作为顶级敷料施肥。在两种情况下,土壤太沙质和光线,由于降雨过多或灌溉不当,尿素肥料的大部分地区都会在土壤中排出。因此,当首选尿素作为氮源时,必须仔细灌溉此类土壤。,在小麦和大麦等植物中将尿素肥料作为顶层肥料播放为高温较高的植物中,尤其是在pH值较高的钙质土壤中,它可能会导致30-40%的氮损失。将尿素肥料施加到土壤中,然后将其与之混合时,氮流失较少。具有两个(20.20.0)和三个(15.15.15)营养素的复合肥料通常,但并非总是以尿素形式含有氮。然而,叶面肥料中的氮是尿素形式的首选,因为叶子被叶子吸收和对植物的影响要快得多。有关更多信息,请参阅我们网站上的“受精建议”。
常规化学耕作正在面临降低或增加成本,或两者兼有[1-4]。在同一土地上重复的养殖单一培养物,例如大米,小麦和棉花等,导致表土,土壤活力,地下水纯度和有益的微生物的耗尽。它终于使作物植物容易受到寄生虫和病原体的影响。化学肥料和农药受到的环境污染在全球范围内构成严重威胁。他们的连续使用可能会破坏有益的土壤微菌群[5-7]。亚硝胺氮肥的转化产物是危险的生态毒药。从施加植物毒性,诱变和致癌作用的硝基胺对植物,动物和人类的作用[8,9]。密集使用无机化学肥料和农药,导致土壤,地面和地下水污染有害化学物质以及重金属的积累[10,11]。通过植物对CD,Cu,Mn和Zn等重金属的吸收与土壤污染水平的增加成比例[12]。 食用这些植物产品的人面临不良健康影响的风险。 镉和铅是主要关注的要素,因为它们在动植物中的积累潜力和毒性作用[13]。 作物,例如菠菜,生菜,胡萝卜,萝卜和西葫芦,可以在组织中积聚重金属[14-19]。 根际含有多种微生物,对作物生产力有益。 Ayansina和oso6)[1]通常使用除草剂阿atrazine和metolachlor降低了土壤的微生物计数。通过植物对CD,Cu,Mn和Zn等重金属的吸收与土壤污染水平的增加成比例[12]。食用这些植物产品的人面临不良健康影响的风险。镉和铅是主要关注的要素,因为它们在动植物中的积累潜力和毒性作用[13]。作物,例如菠菜,生菜,胡萝卜,萝卜和西葫芦,可以在组织中积聚重金属[14-19]。根际含有多种微生物,对作物生产力有益。Ayansina和oso6)[1]通常使用除草剂阿atrazine和metolachlor降低了土壤的微生物计数。促进根瘤菌(PGPR),菌根和蓝细菌的植物生长可促进植物生长,并保护它们免受病原体的影响[20]。增加农作物的生产成本导致印度农民的自杀。稻草,棉花和辣椒等商业作物的单一培养物对生物多样性构成了威胁,并增加了入侵病原体的范围[图1-3]。
摘要:使用有机肥料和玉米稻草作为友好的修正措施,可有效改变农田中的土壤氮(N)循环。然而,有机肥料与稻草返回对土壤质量的综合作用尚不清楚,尤其是在响应土壤硝化作用和硝化微生物方面。我们在中国东北部的毛毛土壤中建立了一个实验,主要包括四种治疗方法:CK(没有传统化肥的没有添加),O(有机肥料施用),S(稻草返回)和OS(有机肥料与稻草返回)。使用高通量测序进一步研究了土壤硝化和硝化微生物。我们的结果表明,与CK相比,土壤水含量,容量,直径> 0.25 mm,平均重量直径,总碳,总氮,铵,硝酸铵,硝酸盐,微生物生物量碳和微生物生物氮的含量不正确,并渗透了尤其均匀的尤其尤其是尤其是尤其尤其均匀的压缩性,并渗透了尤其均匀的尤其是尤其是尤其均匀的尤其均匀的尤其尤其是屈光度,并且渗透于尤其是尤其是尤其的渗透性,并取代了尤其的渗透性,并取得S和OS治疗。此外,OS处理有效地增加了可用的钾和可用的磷含量,并减少了三相R型。有机肥料和稻草的应用有效地优化了土壤结构,尤其是OS处理。与CK,O,S和OS治疗相比,氨氧化古细菌(AOA)的丰度较高,并进一步增强了α多样性和较低的氨氧化细菌(AOB)和NIRK -,NIRK-,NIRS-和Nosz -nosz -Type denitpe denitpe denitpe。AOA和NIRK分别是氨氧化过程和亚硝酸盐还原过程的关键驱动因素。同时,有机肥料和稻草的施用调节了硝基磷酸盐(AOA),γ-杆菌(NIRK和NIRS),α),甲状腺酸细菌(NIRK)和贝protebacteria(Nirk)和β(Nirs)(NIRS(NIRS)。有机肥料和稻草通过增强硝化和反硝化微生物群落中的含量丰富,返回土壤结构。在一起,OS治疗是一种合适的稻草返回实践,用于优化中国东北部农田生态系统的营养平衡。但是,这项研究并未确定如何在有机肥料应用和稻草返回下减少传统的氮肥施用;因此,我们旨在在未来的工作中进行相关研究。
摘要:氮 (N) 是大多数农业生态系统中限制植物生长的生态因素。近几十年来,生物固氮,尤其是来自结瘤豆科植物的固氮,已被推广为工业合成氮肥的替代品或补充。利用叶际固氮生物对多种作物都具有效果的可能性尤其令人兴奋。在本研究中,我们研究了最近投放市场的一种接种剂的固氮能力及其对生菜生长的影响,该接种剂含有微生物共生甲基杆菌,推荐用于各种栽培品种。采用因子设计进行了盆栽试验,包括接种剂(否和是)和四种氮施用率(0 (N0)、25 (N25)、50 (N50) 和 100 (N100) kg ha −1 N),在四个生菜生长周期内重复四次。接种剂仅在四个生长周期中的第二个周期对干物质产量 (DMY) 有显著影响。在四个生长周期中,接种和未接种接种剂的盆中,平均值分别为 9.9 至 13.7 g pot −1 和 9.9 至 12.6 g kg −1 。另一方面,植物对施入土壤的氮表现出强烈的反应,在所有生长周期中 DMY 和组织氮浓度都显著增加。处理 N0 和 N100 中 DMY 的平均值分别为 5.6 至 8.9 g pot −1 和 12.5 至 16.1 g pot −1 。组织中的氮浓度与 DMY 成反比,表明存在浓度/稀释效应。用以估计固定氮的经处理和未处理植物之间的氮浓度差异对于每种土壤的施氮率来说都非常小,假设四个生长周期的平均值分别为 N0、N25、N50 和 N100 的 -1.5、-0.9、2.4 和 6.3 kg ha -1。这项研究强调了接种剂提供给生菜的氮量低及其对 DMY 的影响有限。通常,在具有固氮微生物的生物系统中,要实现高固定率需要微生物和宿主植物之间具有高度的特异性,而生菜似乎并不满足这一条件。考虑到这个课题的重要性,必须进行进一步研究,以更准确地确定在哪些作物和在什么样的生长条件下接种剂被证明是农民的宝贵投入和减少氮矿物施肥的有效方法。
我以极大的自豪和满足感,介绍了环境科学司2023年年度报告。今年我们在1993年庆祝我们的机构31周年时标志着一个重要的里程碑。在过去的三十年中,我们的部门为环境科学领域做出了典范的贡献,解决了我们这个时代最紧迫的问题。建立了环境科学的划分,其使命是提高对环境过程的理解,并为环境挑战提供可持续的解决方案,尤其是在农业生态系统中。自成立以来,该部门已经大大发展,发展成为研究和创新的枢纽。我们的愿景一直是领导环境研究,重点关注气候变化,可持续发展,仿真建模,环境污染,从废物中创造财富以及保护生态系统服务。我们的部门一直处于气候变化研究的最前沿,重点是理解气候变化的影响并制定有效的适应和缓解策略。我们已经对气候变化的驱动因素进行了广泛的研究,包括温室气体排放和土地利用变化。我们的团队一直积极参与旨在通过绿色适应技术来减少温室气体排放和影响农业的政策和战略的制定,以促进可持续发展。应对气候变化对农业的日益严重的挑战,我们的部门开创了对气候富农业的研究。我们已经制定并测试了各种适应策略,以帮助农民应对不断变化的气候。这包括改善的养分和水管理实践,以及促进改进的农艺和农林业系统。我们在这一领域的工作,尤其是在NICRA项目下,我们在增强农业系统对气候变异性的弹性方面发挥了作用。该部门在农作物的仿真模型的开发中取得了重大进步。这些模型用于预测作物产量,评估气候变化对农业生产力的影响,并制定优化资源使用的策略。我们的模型已被政策制定者和从业者广泛采用,为农业部门的计划和决策提供了宝贵的见解。我们研究的关键领域是定量温室气体排放和排放库存的发展。我们的团队已经对包括农业,能源和废物管理在内的各个部门的排放进行了全面评估。对农业土壤,氮肥和农作物残留物的11种农作物的影响,适应性和脆弱性评估据报道,印度是印度的第三次全国性与联合国气候变化的国家通讯框架(UNFCCC)的《第三次国家通讯》。该部门还重点是应对废物管理,修复污染物和环境污染的挑战。我们已经对各种污染物的来源,影响和管理进行了研究,包括塑料废物,重金属和空气污染物。我们还在量化和评估生态系统服务,包括碳