诉讼联合大会Yogyakarta 2019,Hagi - Iagi - Iafmi-iatmi(JCY 2019),Yogyakarta,11月25日至28日,有机页岩抑制剂将高性能水基泥浆(HPWBM)应用于限制了Senale/clays ligaltor limant kharias khariasa:khariasa:khariasa khariasa:卡顿(2)和Bambang Sudewo(2)(1)印度尼西亚班登理工学院(2)MADANI ALAM LESTARI,印度尼西亚雅加达(3)pembangunan pembangunan nasional nasional“退伍军人” Yogyakarta Yogyakarta,D.I。日益卡塔,印度尼西亚电子邮件:kharismaidea@students.itb.ac.id摘要添加添加剂,例如无机页岩抑制剂(NACL,CACL2,KCL和NASIO3)和多胺(Mal-Shales hib/msh hib)减少粘土中的水分。无机页岩抑制剂只有与含有这些盐的水基钻孔液与粘土接触(临时抑制作用),含有盐的液体被淡水取代,粘土将膨胀,因为水合会膨胀,并破坏了钻探地层的稳定。无机页岩在绿岩是主要粘土矿物的页岩形成中有效。无机页岩抑制剂当粘土中含有几个阳离子或不交换阳离子时无效。已经使用了大量盐(高盐度)或其他电解质来增加水相的离子浓度,以阻止渗透性水合。无机页岩抑制剂对高于极限的化学生物生态系统产生不利影响。有关多胺页岩抑制剂/MSH的本文研究,以限制水合页岩/粘土并减轻盐的环境问题。是页岩矩阵/表面反应的单阳离子交换机制。多胺/MSH是有机页岩抑制剂,它是永久的页岩抑制剂,因为适当的阳离子交换能力和较小的水合离子半径与无机页岩抑制剂相比。阳离子源是阳离子胺化合物。MSH是混合多胺的持续所有人。页岩抑制剂材料有效防止页岩/粘土肿胀。mSH的性能是外观淡黄至琥珀色液体,特异性重力在1.12-1.17,pH:7-9左右,并在水中溶于水中,通过嵌入和减少粘土血小板之间的空间,以使水分子不会穿透并引起沙莱膨胀。
在最近的一项工作中,我们简要引入了一个新的水结构指数,与以前的指标不同,该指标是专门针对散装条件以外的通用环境而设计的,使其适用于水合和纳米浓度设置。在这项工作中,我们将详细研究该指标,证明其能够揭示局部结构与液态水中能量之间的微调相互作用的存在。该分子原理可以建立扩展的氢键网络,同时允许通过对不协调的位点进行汇总,从而存在网络缺陷。通过研究不同的水模型和包括正常液体和超冷的不同温度,该分子机制将被证明是大量水的两态行为的基础。另外,通过研究功能化的自组装单层和多样的石墨烯状表面,我们将表明,该原理在水合和纳米填充条件下也是可操作的,从而推广了两种水的水的有效性到这些情况。这种方法将使我们能够定义条件的润湿性,从而准确地衡量了疏水性和可靠的填充和干燥过渡的预测因子。因此,它可能开放了阐明水在生物物理学和材料科学领域的积极作用的可能性。作为初步步骤,我们将研究石墨烯样系统(平行石墨烯片和碳纳米管)的水结构和亲水性,作为限制维度的函数。要实现V4的编程代码,请转到:https://github.com/nicolas-loubet/v4s
普通波特兰水泥(OPC) - 由于其出色的TES能力,良好的机械性能和低成本,因此已广泛用于热量储能(TES)应用。在这项尝试中,这项工作提出了一种升级程序,以对两种由OPC和杂化水泥制成的水合糊的特性进行建模(即一种替代的H污染物粘合剂),后者用于基于Geopolymer的复合材料(GEO)。首先,采用基于能量最小化和分子动力学的原子方法来建模CSH(硅酸盐水合钙)和NASH(铝硅硅酸盐水合物)阶段的热行为和热储存能力,这是基于OPC的Paste和Geo的主要阶段。然后,提出了提出的上缩放优化程序和中尺度的FEM均质化技术,以将基于OPC的糊和GEO的原子主要阶段的TES参数与均质的Meso/Macro量表值联系起来。为此,在OPC和GEO糊剂上的实验程序的结果都被视为校准/验证数值工具的基准。在几个尺度上进行的有希望的模拟和上刻度程序的模拟在均质化的温度依赖性热容量和热扩散率方面证明了与分析混合物的实验数据良好的一致性。2023作者。由Elsevier Ltd.这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)。
如果尿液中有细菌,但这并不意味着有感染。老年人的积极用尺尺是没有帮助的。那么什么时候应该使用尿液量?永远!老年人的积极尺寸可能意味着:我们被误导为认为该人有UTI并且错过了实际诊断。我们被误导为认为该人有UTI,而实际的诊断被错过了。请在“资源”部分上查看我们的网站,因为您将找到有关UTI和水合的有用信息,包括我们的Care Home UTI评估工具(下载)
低温电子显微镜(冷冻)单个颗粒分析的进步通过促进了完全水合的大分子分子络合物的原子和近原子分辨率结构的体外确定,从而彻底改变了结构生物学,这些结构表现出了全面水合的巨大分子配合物,这些结构均具有跨大小范围的构成和构象异构性。低温电子断层扫描(冷冻)和亚图平均迅速发展,正在为原位提供类似的大分子复合物的见解,而无需标签或严厉的生化纯度。此外,冷冻物可以直接在分子,纳米分辨率下直接在没有化学固定或染色伪影的分子纳米分辨率下可视化细胞和组织表型。这项前瞻性评论涵盖了Cryoem/ET的最新发展以及相关技术,例如低温浓缩的离子束铣削扫描电子显微镜和相关光学显微镜,越来越多地增强和通过人工智能算法增强和支持。讨论了他们对新兴概念的潜在应用,主要是补充医学组织病理学分析的前景。机器学习解决方案有望解决组织,细胞和大分子冷冻中的“大数据”所带来的当前挑战,从而提供了对疾病过程的新颖,定量见解的希望,这些疾病可能会转化为诊所并导致改进的诊断和靶向治疗方法。
使用抑制剂可以最大程度地减少或阻止石油和天然气工业中气体水合物的形成。本文报道了半纤维素和改性木质素作为低剂量气体水合物抑制剂(LDGHIS)。ldghis,并通过减弱的总反射率 - 傅立叶变换红外(ATR -FTIR)光谱仪,孔隙率和热力计分析仪(TGA)。PGE和SCB分别产生了77.75%和12.38%的半纤维素,而椰子coir产生了35.59%的木质素,该木质素经过修饰为木质磺酸钠(SLS),以提高其在水中的溶解度。根据转化为气体水合物的水百分比,评估了分离的半纤维素和修饰木质素对气体水合物的抑制作用。在没有抑制剂的情况下,将大部分的水(75.20%)转化为气体水合物,而在半纤维素的存在下,将最小水转化为气体水合物的含量为43.37%。随着浓度的增加,半纤维素从PGE和SCB增加的抑制能力增加。统计检验表明,在PGE和SCB的半纤维素存在下形成气体水合的水百分比之间没有显着差异(n = 4,p = 0.06,CI = 95%)。另一方面,SLS促进了气体水合的生长。在存在SLS的情况下,反应堆中的所有液体均转化为气体水合物。因此,SLS可以用作天然气储存和二氧化碳固相的气体水合物的启动子,而PGE和SCB的半纤维素作为低剂量水合物抑制剂。
美国能源部,石油和天然气办公室的供应和交付司在具有适当的政府作用的领域确定和运营,以开发可以提高能源和经济安全的技术。该部门通过铁轨提供了天然气基础设施,气体水合和原油的早期研究:•开发技术以减少甲烷损失并提高天然气基础设施的运营效率。•分析有关石油和天然气安全输送的关键基础设施问题。•开发技术以安全有效地找到,表征和从气体水合物形成中恢复甲烷。•进行美国能源部(DOE)研究。
石墨烯能够通过提高水合水泥的热扩散性来预防早期热裂纹的能力,这与预铸造的混凝土产生特别相关,因为混凝土块在高温下在高温下烘烤在高温下,并且较大的块会导致冷却时导致裂纹的温度梯度。通过专注于这些相对较高的价格混凝土产品,不仅将石墨烯用作增强填充剂,而且还将其提供用于解决行业挑战或目标的特殊财产增强功能,石墨烯可以在各种水泥和混凝土市场领域中取得成功。
Hana Nedozrálová 1 , Pavel Křepelka 1 , Muhammad Khalid Muhammadi 2 , Žilka Norbert Žilka 2 , Jozef Hritz 1 1 Central European Institute of Technology, Masaryk University, Brno, Czech Republic, 2 Institute of Neuroimmunology, Slovak Academy of Science, Bratislava, Slovakia Background包括。旨在使病理tau蛋白聚集体的积累是许多神经退行性疾病的标志,包括阿尔茨海默氏病。神经元中错误折叠的tau的积累是有毒的,它破坏了细胞生理学,导致神经元死亡和tau在整个大脑中的传播。TAU病理的影响包括轴突运输,线粒体和溶酶体功能障碍以及突触变性。 尽管在理解tau病理学方面取得了进步,但最初的tau错误折叠,原纤维形成,跨连接的神经元的病理传播以及随后在单个神经元水平上的细胞毒性仍然不清楚。 我们的目的是直接在鼠类鼠模型的玻璃化脑组织中可视化分子结构的病理变化。 可视化天然超微结构的方法我们使用玻璃化的新鲜大脑而无需染色或固定。 我们将以低温为中心的离子束铣削(FIB)和生物对比度扫描电子显微镜(SEM)与羊角层上的冷冻电子层析成像(Cryo-ET)结合在一起。 Helios Hydra V显微镜的冷冻等离子体-FIB/SEM设置允许对非染色的玻璃体水合生物样品进行成像,在纳米分辨率中具有高生物学对比度的非染色玻璃化水合生物样品,允许体积成像覆盖比冷冻-ET中使用的典型lamella更宽的面积。TAU病理的影响包括轴突运输,线粒体和溶酶体功能障碍以及突触变性。尽管在理解tau病理学方面取得了进步,但最初的tau错误折叠,原纤维形成,跨连接的神经元的病理传播以及随后在单个神经元水平上的细胞毒性仍然不清楚。我们的目的是直接在鼠类鼠模型的玻璃化脑组织中可视化分子结构的病理变化。可视化天然超微结构的方法我们使用玻璃化的新鲜大脑而无需染色或固定。我们将以低温为中心的离子束铣削(FIB)和生物对比度扫描电子显微镜(SEM)与羊角层上的冷冻电子层析成像(Cryo-ET)结合在一起。Helios Hydra V显微镜的冷冻等离子体-FIB/SEM设置允许对非染色的玻璃体水合生物样品进行成像,在纳米分辨率中具有高生物学对比度的非染色玻璃化水合生物样品,允许体积成像覆盖比冷冻-ET中使用的典型lamella更宽的面积。导致此海报,我们介绍了原位可视化工作流程,并展示了初步的生物对比冷冻式纤维/SEM/SEM图像以及受tauopathy影响的鼠大脑组织的层状。结论我们表明,新型的生物对比度冷冻质量fib/sem成像工作流程可用于无需化学固定的病理组织的超微结构表征,并且与lamella callout和situ Cryo-et的结合为揭示神经变性细胞的细节提供了出色的工具。承认这项工作已获得捷克科学基金会(22-15175i)的资金。我们承认Cero-Electron显微镜和层析成像核心设施CIISB的CEITEC MU,指导CZ Center,由Meys CR(LM2023042)和欧洲区域发展基金会“ UP CIISB”(No.cz.02.1.01/0.0/0.0/18_046/0015974)。