低成本和高效率的基于Zn的流量电池(ZFB)已成为可再生能源开发的有前途的能源存储技术之一。然而,在ZFB中,由于存在Zn 2 +,一个阴离子交换膜(AEM)损失离子电导率。Zn 2 +沉淀的侧反应导致AEM与第四纪基团的离子交换分解。虽然阳离子交换膜(CEM)由于离子交换组和阴离子之间的静电相互作用而阻碍阴离子结构。为了解决ZFB中离子交换膜不良的电导率,基于聚醚酰亚胺(PEI)的多孔离子导电膜是通过ZFBS的水相反转技术开发的。离子导电机制基于孔径的排除,这减轻了离子交换组对离子电导率的影响。通过引入合适的聚乙烯基吡咯烷酮(PVP)并控制四氢呋喃(THF)挥发时间,可以进一步改善膜性能。结果表明,在Zn/4-羟基-2,6,6-6,6-四甲基二哌啶中,1-氧基(TEMPO-OH)流量电池,库仑效率(CE)超过98%,能量效率(EE)在20 mA-cm-2-2-2中的能量效率(EE)可实现,并且可以在20 mA cm-2-2中以20 ma-2的供应来实现。 150个周期。基于PEI的多孔膜(低成本和高效率)被认为是ZFB的有希望的策略。
1机械工程系,穆罕默迪亚·马吉兰大学。Mayjend Bambang Soegeng KM 5 Mertoyudan,Magelang,Jawa Tengah,印度尼西亚2冶金研究中心,Brin GD.720。KST B.J.Habibie,Puspiptek地区,Serpong,Tangerang Selatan,Banten,Indonesia电子邮件:raha006@brin.go.id; habibi@unimma.ac.id摘要一个快速冷却过程对于保持车辆的最佳工作温度至关重要,这直接影响其效率。腐蚀是使用水基流体的冷却系统中的持续且必然的破坏。当前的挑战是探索不仅表现出极好的耐腐蚀性,而且具有优异的热传导性能以提高车辆效率的水性流体。这项研究研究了以其腐蚀性抑制特性而闻名的石墨烯掺入乙二醇/水溶液中,以评估其在AL6061材料上的保护效果。一系列分析方法,包括光发射光谱(OES),PH,电导率,傅立叶转换红外光谱(FTIR)和极化技术,用于评估各个浓度和不同环境温度下氧化石墨烯的腐蚀抑制性能。结果显示,随着氧化石墨烯浓度的增加,pH值和电导率降低。FTIR分析证实了在AL6061表面的保护层的形成。对浸入乙二醇/水混合物的AL6061样品对氧化石墨烯浓度为0、0.03%,0.05%和0.10%进行了腐蚀速率评估。在冷却系统中添加氧化石墨烯时的腐蚀速率显着降低:在30°C下,速率降低至4.620、3.308、2.565和1.006 mpy;在40°C,最高为4,728、2,541、1,503和1,270 mpy;在50°C时,最高为5.629、1.146、2.947和1.441 MPY,相应的氧化石墨烯浓度分别为0.03%,0.05%和0.1%。实验数据证实,氧化石墨烯有效降低了乙烯甘油/水混合物中Al6061的腐蚀速率。该研究得出的结论是,将氧化石墨烯用作腐蚀抑制剂明显提高了Al6061在乙烯乙二醇/水中的耐药性和性能,氧化石墨烯通过生理过程有助于这种保护机制。关键字:乙二醇,氧化石墨烯,冷却系统,AL 6061,腐蚀抑制剂
摘要 机械能因其丰富性而成为一种很有前途的环境能源。摩擦纳米发电机 (TENG) 是一种基于接触起电的有效机械能收集方法。现有的液体基 TENG 可以在不损坏表面的情况下稳定运行;然而,这些 TENG 的输出比固体基 TENG 小得多。值得注意的是,液体直接接触导电材料的液体基 TENG 可以产生超过几 mA 的电流。然而,液体储存器必须具有足够的体积,并且必须提供足够的空间让液体移动以产生电输出。为了确保紧凑轻巧的设计并在低输入频率范围内产生电输出,我们推出了一种移动棒式水基 TENG (MSW-TENG)。所提出的 MSW-TENG 可以分别产生高达 710 V 和 2.9 mA 的开路电压和闭路电流,并可用作自供电安全装置。本研究的结果可以促进TENG在日常应用中的实现。
该工厂在 2019 年仅使用油性涂料,自 2020 年 9 月以来几乎只使用水性和水基涂料。丹尼斯表示,该工厂自 2021 年初以来就没有使用过油性材料。水性涂料使用水作为溶剂来分散用于制造涂料的树脂。水性涂料含有主要由水组成的溶剂,释放的 VOC 较少。该工厂使用大容量低压 (HVLP) 喷枪涂抹油漆涂层,该喷枪有一个一加仑的压力罐用于输送。水基/水基涂料必须非常缓慢地涂抹。如果使用油性涂料,也使用 HLVP 喷枪涂抹,该喷枪包含一个 20 盎司的涂料杯。这些涂料中的 HAP 包括二甲苯、甲苯、乙苯和甲醇。
作者感谢ANP人力资源培训计划(PRH-ANP/MCT)的财务支持,UFRN为这项工作的必要条件以及生物赛(保加利亚)捐赠酶样品。_____________________ 1 Yutaka,T。; Kitagawa,M。水溶性糖分支聚(乙烯基醇)的化学偶联合成”,《聚合物和高级材料的科学与技术》,P.N。 Prasad编辑,《全体会议》,纽约州,1998年,第447-491页。 2 Bognolo,G。;胶体表面A:Physicochem的生物表面作用为乳化乳剂的乳化作用。 eng。 方面,1999,152,41-52。 §ricinoleoil的D-葡萄糖源自源自rinoleic酸的d-糖果的蓖麻油U ricinoleoil_____________________ 1 Yutaka,T。; Kitagawa,M。水溶性糖分支聚(乙烯基醇)的化学偶联合成”,《聚合物和高级材料的科学与技术》,P.N。Prasad编辑,《全体会议》,纽约州,1998年,第447-491页。2 Bognolo,G。;胶体表面A:Physicochem的生物表面作用为乳化乳剂的乳化作用。 eng。 方面,1999,152,41-52。 §ricinoleoil的D-葡萄糖源自源自rinoleic酸的d-糖果的蓖麻油U ricinoleoil2 Bognolo,G。;胶体表面A:Physicochem的生物表面作用为乳化乳剂的乳化作用。eng。方面,1999,152,41-52。§ricinoleoil的D-葡萄糖源自源自rinoleic酸的d-糖果的蓖麻油U ricinoleoil
摘要:人工智能方法和机器学习模型已证明其能够优化、建模和自动化关键的水和废水处理应用、自然系统监测和管理以及水培和鱼菜共生等水基农业。除了为围绕水化学和物理/生物过程的复杂问题提供计算机辅助援助外,人工智能和机器学习 (AI/ML) 应用有望进一步优化水基应用并降低资本支出。本评论提供了与 AI 或 ML 结合的同行评审的关键水基应用的横截面,包括氯化、吸附、膜过滤、水质指数监测、水质参数建模、河流水位监测和鱼菜共生/水培自动化/监测。尽管本文所回顾的人工智能方法、机器学习模型和智能技术(包括物联网 (IoT)、传感器和基于这些技术的系统)在控制、优化和建模方面取得了成功,但关键挑战和限制始终存在且普遍存在。数据管理不善、可解释性低、模型可重复性和标准化差以及缺乏学术透明度都是成功实施这些智能应用需要克服的重要障碍。为了克服这些障碍并继续成功实施这些强大的工具,我们提出了帮助可解释性、数据管理、可重复性和模型因果关系的建议。
GridStar Flow 在美国开发,基于一种新型、受保护的氧化还原液流电池化学成分,该化学成分由水基、不易燃的工程电解质组成,这些电解质由常见材料制成,具有耐用性、灵活性、安全性和具有竞争力的总拥有成本。
GridStar Flow 在美国开发,基于一种新型、受保护的氧化还原液流电池化学成分,该化学成分由水基、不易燃的工程电解质组成,这些电解质由常见材料制成,具有耐用性、灵活性、安全性和具有竞争力的总拥有成本。
共价有机骨架 (COF) 是具有固有孔隙率的晶体材料,可在各个领域提供广泛的潜在应用。然而,COF 研究领域的主要目标是实现最稳定的热力学产物,同时达到实现特定功能所必需的尺寸和结构。虽然在 2D COF 的合成和加工方面取得了重大进展,但可加工的 3D COF 纳米晶体的开发仍然具有挑战性。本文介绍了一种在环境条件下生产可加工的亚 40 纳米 3D COF 纳米粒子的水基纳米反应器技术。值得注意的是,这项技术不仅提高了合成的 3D COF 的可加工性,而且还揭示了它们在以前未探索过的领域(如纳米/微型机器人和生物医学)中的应用令人兴奋的可能性,这些领域受到较大晶体的限制。