石油和天然气行业面临的重大挑战之一是减少与钻井作业相关的碳足迹。本文介绍了一项案例研究,以实施选择性絮凝过程,以优化钻探操作期间的人均流体消耗,高性能水基泥浆(WBM)。在哥伦比亚油田中进行的研究表明,在絮凝过程中聚合物浓度和注射速率的调整如何减少液体稀释的需求,从而减少水和化学消耗,废物产生以及CO 2等效(CO 2 EQ。)排放。这些发现突出了选择性絮凝在增强钻井流体性能并促进可持续性目标方面的有效性。
Molicel制造中的回收原材料致力于制造符合环境标准的产品,并要求所有成品在遵守ISO 9001的同时通过相关的UL,UL,UN和IEC认证,完全符合国际法规。Molicel的目标是尽可能使用环保的原材料。我们促进了高端二手电池的使用,并积极回收阴极材料。NMP系统的回收率在过程中达到了令人印象深刻的90%,并已进一步转移到水基系统中,以最大程度地减少环境影响。此外,我们与供应商进行了讨论,以讨论原材料的回收和再利用,以提高电池效率,降低资源消耗并最大程度地减少
Tench Reserve通常用于步行,骑自行车,跑步,锻炼,野餐,游戏和水基娱乐活动。大河步道(Great River Walk)的一部分(沿Hawkesbury-Nepean River System沿着7公里步行路程)穿过Tench Reserve。公园现有游乐场附近的区域是由原住民群体使用的。真实的节日是Tench Reserve举行的年度周末大型艺术与文化活动,观众高达30,000。这包括大规模的公共艺术设施,剧院表演和基础设施,这些设施需要大型清晰和水平的区域,以及植物设备和人群能力的可访问性。从该地点北部地区的历史果园中采摘的桑树是当地人中流行的活动。
TX705P STX705P TX720B STX763 STX764 头部材料 棉/100 ppi 聚氨酯泡沫 棉 棉 棉/100 ppi 聚氨酯泡沫 短纤维涤纶 短纤维涤纶 头部宽度 13.5 毫米 (0.531 英寸) 7.0 毫米 (0.276 英寸) 7.0 毫米 (0.276 英寸) 11.8 毫米 (0.465 英寸) 5.8 毫米 (0.228 英寸) 4.6 毫米 (0.181 英寸) 头部厚度 13.5 毫米 (0.531 英寸) 7.0 毫米 (0.276 英寸) 7.0 毫米 (0.276 英寸) 10.0 毫米 (0.394 英寸) 5.8 毫米 (0.228 英寸) 4.6 毫米 (0.181 英寸) 头部长度 28.0 毫米 (1.102 英寸) 17.0 毫米 (0.669 英寸) 17.0 毫米(0.669") 26.3 毫米 (1.035") 18.0 毫米 (0.709") 17.0 毫米 (0.669") 手柄材质 木材 木材 聚苯乙烯 木材 聚苯乙烯 聚苯乙烯 手柄宽度 2.5 毫米 (0.098") 2.5 毫米 (0.098") 2.5 毫米 (0.098") 2.5 毫米 (0.098") 2.5 毫米 (0.098") 2.5 毫米 (0.098") 手柄厚度 2.5 毫米 (0.098") 2.5 毫米 (0.098") 2.5 毫米 (0.098") 2.5 毫米 (0.098") 2.5 毫米 (0.098") 手柄长度 126.0 毫米 (4.961") 135.0 毫米 (5.315") 135.0 毫米(5.315") 127.0 mm (5.000") 134.0 mm (5.276") 134.0 mm (5.276") 拭子总长度 154.0 mm (6.063") 152.0 mm (5.984") 152.0 mm (5.984") 154.0 mm (6.063") 155.0 mm (6.102") 155.0 mm (6.102") 头部粘合 机械粘合剂 粘合剂 热/机械水基粘合剂 水基粘合剂 手柄颜色 棕色 棕色 白色 棕色 白色 白色 设计说明 泡沫头机械固定在棉签芯上;长木柄
摘要在水基钻孔操作过程中,页岩肿胀的发生对页岩地层的稳定性构成了重大挑战。粘土层膨胀是页岩肿胀的主要原因,这是由于粘土矿物质和钻孔液成分之间的相互作用而引起的。膨胀程度由诸如粘土组成,离子交换过程,渗透压,离子强度,温度和压力等变量确定。因此,本研究探讨了各种页岩肿胀抑制剂,并精心研究了基本机制。常规抑制剂的有效性,例如氯化钾(KCL),氯化铵(NH 4 Cl)和基于胺的抑制剂。但是,重要的是要注意,这些抑制剂确实有一定的局限性。因此,目前的工作研究了一系列环保抑制剂,包括氧化石墨烯,离子液体,深层共晶溶剂,纳米颗粒,纳米复合材料和生物表面活性剂。氧化石墨烯在缓解页岩肿胀并产生广泛的,不间断的防护涂层方面具有显着的功效。与KCL相比,由1-丁基-3-甲基咪唑醛(BMIMCL)代表的离子液体表现出增强的抑制特性,导致膨润土肿胀率降低了19.38%。 此外,已经观察到,诸如nades之类的深层共晶溶剂(DESS)具有明显的抑制特征,导致粘土样品中肿胀率降低了49.1-62.8%。离子液体表现出增强的抑制特性,导致膨润土肿胀率降低了19.38%。此外,已经观察到,诸如nades之类的深层共晶溶剂(DESS)具有明显的抑制特征,导致粘土样品中肿胀率降低了49.1-62.8%。纳米复合材料涉及单壁碳纳米管(SWCNT)和聚乙烯基吡咯烷酮(PVP)的整合,已经成功地缓解了页岩肿胀和调节流体损失。 此外,生物表面活性剂,例如壳聚糖 - 诱发的L-精氨酸,亚麻籽蛋白(FP)和亚麻籽粘液(FM),它们作为页岩抑制剂具有潜力,它们都是可生物降解和环保友好的页岩抑制剂。 这些发现有助于持续的努力,以改善钻探操作的环境可持续性并遵守严格的环境保护标准。 然而,在广泛使用之前,需要进行更多的调查,完善和实际应用分析。 关键字:水基钻孔液,页岩形成,页岩肿胀,抑制剂,环保纳米复合材料涉及单壁碳纳米管(SWCNT)和聚乙烯基吡咯烷酮(PVP)的整合,已经成功地缓解了页岩肿胀和调节流体损失。生物表面活性剂,例如壳聚糖 - 诱发的L-精氨酸,亚麻籽蛋白(FP)和亚麻籽粘液(FM),它们作为页岩抑制剂具有潜力,它们都是可生物降解和环保友好的页岩抑制剂。这些发现有助于持续的努力,以改善钻探操作的环境可持续性并遵守严格的环境保护标准。然而,在广泛使用之前,需要进行更多的调查,完善和实际应用分析。关键字:水基钻孔液,页岩形成,页岩肿胀,抑制剂,环保
摘要:芯片实验室 (LoC) 设备被描述为多功能、快速、准确且低成本的平台,用于处理、检测、表征和分析水基环境中的各种悬浮颗粒。然而,对于基于气体的应用,特别是在大气气溶胶科学中,很少开发 LoC 平台。本综述总结了用于对空气中的颗粒(尤其是被称为颗粒物 (PM) 的颗粒)进行分类、测量和识别的新兴 LoC 设备,这些颗粒与心血管和呼吸系统疾病的发病率和死亡率增加有关。对于这些设备,介绍并比较了它们的工作原理和性能参数,同时强调了它们的优点和缺点。讨论当前的应用将使我们能够识别挑战并确定开发更强大的 LoC 设备以监测和分析空气中的 PM 的未来方向。
SCR 系统使用水基尿素溶液 (AdBlue®) 作为氨源来中和柴油发动机尾气排放中的氮氧化物。在 SCR 系统中,氨 (NH 3 ) 选择性地与氮氧化物发生反应,生成无害的氮和水。为保证这些化学物质从储罐安全输送到排气系统,SCR 技术需要基于专门设计的弹性体材料的零件。这些材料会暴露于 AdBlue® 中并受到其侵蚀。选择合适的弹性体材料来耐受腐蚀性尿素溶液对弹性体来说是一项相当大的技术挑战。这同样适用于 AdBlue® 应用中经常需要的弹性体与金属的粘合。凭借其卓越的技术和基于 EPDM 和 HNBR 的顶级弹性体材料,德特威勒应对了这一挑战。
在选择适合您的产品的餐饮前有许多因素需要考虑;不同的成分,pH值,材料com专利性和法律批准,仅举几例。大量的微生物,不同的包装和存储条件以及原材料的巨大多样性施加的需求施加了仅在可接受的剂量下使用的一种微生物活动而无法涵盖的需求。Vink Chemicals 使用综合Grotan®,Parmetol®,Grotanol®和Vinkocide®产品线,已开发出复杂的多组件防腐剂系统,以充分保护您的产品。 选定活性物质的最佳组合为金属工作液浓缩物和其他技术产品中的各种水基配方提供了可持续保存。 我们的杀菌剂在不改变冷却剂的特定撑杆的情况下迅速有效地起作用。 对微生物损害的保护是持久的,并且具有对MWF的操作温度以及有机和无机物质的影响。 我们的防腐剂具有良好的物质兼容性并满足国家间法律要求;例如 在欧盟国家(EU)的国家 /地区,我们的产品得到了杀菌剂产品法规(BPR)和覆盖范围的支持。使用综合Grotan®,Parmetol®,Grotanol®和Vinkocide®产品线,已开发出复杂的多组件防腐剂系统,以充分保护您的产品。选定活性物质的最佳组合为金属工作液浓缩物和其他技术产品中的各种水基配方提供了可持续保存。我们的杀菌剂在不改变冷却剂的特定撑杆的情况下迅速有效地起作用。对微生物损害的保护是持久的,并且具有对MWF的操作温度以及有机和无机物质的影响。我们的防腐剂具有良好的物质兼容性并满足国家间法律要求;例如在欧盟国家(EU)的国家 /地区,我们的产品得到了杀菌剂产品法规(BPR)和覆盖范围的支持。
摘要:芯片实验室 (LoC) 设备被描述为多功能、快速、准确且低成本的平台,用于处理、检测、表征和分析水基环境中的各种悬浮颗粒。然而,对于基于气体的应用,特别是在大气气溶胶科学中,很少开发 LoC 平台。本综述总结了用于对空气中的颗粒(尤其是被称为颗粒物 (PM) 的颗粒)进行分类、测量和识别的新兴 LoC 设备,这些颗粒与心血管和呼吸系统疾病的发病率和死亡率增加有关。对于这些设备,介绍并比较了它们的工作原理和性能参数,同时强调了它们的优点和缺点。讨论当前的应用将使我们能够识别挑战并确定开发更强大的 LoC 设备以监测和分析空气中的 PM 的未来方向。