厄瓜多尔亚马逊的黄色皮塔哈亚已成为该地区最重要的经济作物之一。然而,土壤中的害虫(线虫)影响了农作物生长阶段的100%。面对这个问题,种植者使用了各种化学壁甲虫剂,以最大程度地减少这种影响,但会导致污染问题。出于这个原因,研究的目的是评估微生物在温室水平控制或减少Pitahaya作物中Meloidogyne Incognita的种群。设计是DBCA,使用线性混合模型和Fisher的测试(5%)使用统计包Infostat 2017进行统计分析。结果表明,在线虫注射后施用丁香杆菌 + T.芦荟时,根结节减小(261)。此外,在线虫接种后应用微生物时,获得了最低的结节(251)(251个淋巴结)。仍然,当使用微生物时,即使在根系中存在线虫时,也会刺激空中生物量生长(384.17 g)。
摘要:类似甲基转移酶的3(METTL3)和METTL14形成了一种催化最丰富的内部mRNA修饰的异二聚体复合物,N 6-甲基腺苷(M 6 A)。mettl3是结合二叶酸S-腺苷蛋氨酸(SAM)的催化亚基,而Mettl14参与mRNA结合。m 6修饰提供了对基因表达的转录后水平控制,因为它影响了mRNA生命周期的几乎所有阶段,包括剪接,核输出,翻译和衰减。有越来越多的证据表明Mettl3在急性髓样白血病中的致癌作用。在这里,我们使用催化亚基METTL3的结构和动态细节来开发与SAM竞争的小分子抑制剂。从通过高通量对接识别的命中开始,采用蛋白质晶体学和分子动力学模拟来指导抑制活性的优化。通过均匀分辨荧光测定法测量的效力成功提高了8000倍。优化化合物对脱靶RNA甲基转移酶METTL1和METTL16具有选择性。关键字:Mettl3/Mettl14,表面参考,计算机辅助药物设计(CADD),分子动力学,M 6 A-RNA,SAR■简介
通过导体驱动的电子电流可以通过著名的库仑阻力效应诱导另一个导体中的电流。在移动的流体和导体之间的接口上已经报道了类似的现象,但是它们的解释仍然难以捉摸。在这里,我们利用了非平衡的Keldysh框架,开发了一种相互交织的流体和电子流的量子机械理论。我们预测,全球中性液体可以在其流动的实心壁中产生电子电流。这种流体动力学库仑阻力均来自液体电荷波动与固体电荷载体之间的库仑相互作用,以及由实心声子介导的液体电子相互作用。我们根据固体的电子和语音特性以及液体的介电响应明确地得出了库仑阻力电流,这一结果与液态涂纸界面上的最新实验一致。此外,我们表明当前一代抵消了从液体到固体的动量转移,从而通过量子反馈机制降低了流体动力摩擦系数。我们的结果为控制量子水平控制纳米级液体流量提供了路线图,并提出了设计具有低流体动力摩擦的材料的策略。
电池电动汽车(BEV)是被认为是减少运输部门的温室气体排放并解决气候变化的解决方案之一[1],[2]。BEV的足够市场渗透需要改善当前BEV的范围和成本[3]。因此,寻求提高电池的能量密度并提高牵引系统的整体效率。在这种情况下,本文遵循两个平行的改进轴:基于具有集成电池电池的级联的H桥逆变器(CHB-IB)[4] - [6]的创新电池子系统,以及能够在制动阶段增加能量回收率的能源管理策略的发展[7] - [10]。最近提出了一种基于CHB-IB的创新拓扑结构,以取代BEV的常规牵引系统。它由与集成电池电池组成的几个H桥转换器组成。他们为电动牵引力机提供最近的水平控制。以前的论文已经描述了这种新拓扑及其控制[11] - [13]。CHB-IB旨在履行电压源逆变器(VSI),电池管理系统(BMS)和充电器的角色。与常规拓扑相比,预计会有显着改善。先前的一项研究评估了新拓扑的效率[13]。在电牵引机的扭矩速度平面上确定了损耗图。
摘要:纤维增强聚合物复合材料由于其高刚度,正在成为传统金属材料修复和替代中的重要且方便的材料。复合材料在其使用寿命期间会承受不同类型的疲劳载荷。增强纤维增强聚合物复合材料在疲劳应力下的设计方法和预测模型的动力依赖于更精确和可靠的疲劳寿命评估技术。在拉伸-拉伸疲劳场景中研究了纤维体积分数和应力水平对玻璃纤维增强聚酯 (GFRP) 复合材料疲劳性能的影响。本研究的纤维体积分数设置为:20%、35% 和 50%。使用万能试验机对样品进行拉伸试验,并使用四种不同的预测模型验证杨氏模量。为了确定复合材料的失效模式和疲劳寿命,对聚酯基 GFRP 样品在五个应力水平下进行了评估,这五个应力水平分别为最大拉伸应力的 75%、65%、50%、40% 和 25%,直到发生断裂或达到五百万次疲劳循环。实验结果表明,玻璃纤维增强聚酯样品在高施加应力水平下发生纯拉伸失效,而在低应力水平下,失效模式受应力水平控制。最后,利用不同体积分数的 GFRP 复合材料样品的实验结果进行模型验证和比较,结果表明,所提出的框架在拉伸-拉伸疲劳状态下预测疲劳寿命与实验疲劳寿命具有可接受的相关性。
摘要:纤维增强聚合物复合材料由于其高刚度,正在成为传统金属材料修复和替代中的重要且方便的材料。复合材料在其使用寿命期间会承受不同类型的疲劳载荷。增强纤维增强聚合物复合材料在疲劳应力下的设计方法和预测模型的动力依赖于更精确和可靠的疲劳寿命评估技术。在拉伸-拉伸疲劳场景中研究了纤维体积分数和应力水平对玻璃纤维增强聚酯 (GFRP) 复合材料疲劳性能的影响。本研究的纤维体积分数设置为:20%、35% 和 50%。使用万能试验机对样品进行拉伸试验,并使用四种不同的预测模型验证杨氏模量。为了确定复合材料的失效模式和疲劳寿命,对聚酯基 GFRP 样品在五个应力水平下进行了评估,这五个应力水平分别为最大拉伸应力的 75%、65%、50%、40% 和 25%,直到发生断裂或达到五百万次疲劳循环。实验结果表明,玻璃纤维增强聚酯样品在高施加应力水平下发生纯拉伸失效,而在低应力水平下,失效模式受应力水平控制。最后,利用不同体积分数的 GFRP 复合材料样品的实验结果进行模型验证和比较,结果表明,所提出的框架在拉伸-拉伸疲劳状态下预测疲劳寿命与实验疲劳寿命具有可接受的相关性。
使用自主无人机协作群调查区域并收集有关失踪人员位置的信息,可以为搜索和救援行动带来巨大好处。本文研究了无人机群算法,该算法可防止代理对之间以及代理与静态障碍物之间的碰撞。该群由具有通信约束的低成本协作固定翼飞机组成。首先开发了一种分散式群体行为,假设系统能够提供所有飞机的准确位置。此外,代理通过使用 RSSI 测量来估计其位置。所有代理都配备了通信设备和广播无线电信号,并测量接收到的信号强度,以估计与其他群成员的距离。这些估计值进一步用于开发多点定位算法,其中每个代理使用来自至少三个附近代理的距离估计来估计自己的位置。通过添加飞机运动学的动态模型,可以提供更准确的估计,其中考虑了错误的位置估计。在 MATLAB 中,在 2-D 环境中模拟了自主群。代理实时做出决策,其运动由势场和信息素水平控制。排斥势用于防止碰撞,吸引势用于形成无人机集群,以便所有成员都保持在通信范围内。群体也被吸引到环境中未探索的区域。当提供真实的无人机位置时,开发的势场算法在控制群体方面确实显示出有希望的结果。代理对之间或代理与障碍物之间没有发生碰撞。代理没有越界,群体很强大,因为它能够处理单个成员的丢失。对于基于 RSSI 的位置估计方法,需要进一步开发群体行为。通信设备的接收器灵敏度限制了代理之间的最大距离及其滚动角度差异。当发生单个故障或障碍物阻碍群体路径时,并不总是有足够的 RSSI 测量值可用于执行
技术要求•计划是标准A1尺寸(594 mm x 841 mm)或拱形D大小(609.6 mm x 914.4 mm)板,以度量为单位,并使用适当的度量标准(1:200,1:200,1:250,1:300,1:300,1:300,1:1:400,1:400或1:500)。•为支持本申请的许多计划和研究必须由合格的工程师,建筑师,测量师,规划师或指定专家签名,密封和日期。如果缺少此信息,该市将不会审查计划或研究。•所有必需的研究的电子副本和细分计划草案必须以Adobe .pdf格式提供,并随附您的申请提交。所有PDF提交的文档均应解锁,扁平化并不保存为投资组合文件。•电子文档名称应与此表格第3节中包含的研究/计划名称相匹配。这些文档将在该市的开发应用搜索工具上公开可用。•分区计划草案必须参考水平控制网络并由财产所有人签署。•分区计划草案,以及任何后续的修订,必须以衡量标准单元(计算机辅助设计)格式提供,并以识别和标记为标记。如果可能的话,该计划还必须以网格格式进行地理化和提供。在MTM 9区,NAD83中协调。线条必须清楚地表明细分的周边,每个批次,块或部分都带有明确的文本标签。财务要求•描述该提案的大标志将发布在主题财产上。此服务的费用作为申请成本的一部分($ 1,023.78)。附加标牌,如果需要,将向申请人开具发票,每个标志$ 510.76。•在整个开发审查过程中可能需要额外的费用,包括但不限于Parkland奉献,技术报告的同行审查,保护局费用,协议以及相关费用以及适用的证券。
钛(Ti)植入物以其机械可靠性和化学稳定性而闻名,这对于肉体再生至关重要。已经开发了各种形状控制和表面修饰技术,以增强生物学活性。尽管胶原蛋白/磷灰石骨微结构对机械功能,抗菌特性以及生物相容性,精确和多功能模式控制对重生微结构至关重要。在这里,我们开发了一种新型的成骨裁缝条纹 - 微图案MPC-TI底物,可诱导对定向骨基质组织的遗传水平控制。这种生物材料是通过微观图2-甲基丙酰氧甲基乙基磷酸胆碱(MPC)聚合物通过选择性光反应到钛(Ti)表面上产生的。Stripe-Micropatened MPC-TI底物建立了一个独特的细胞粘附界面,可通过肌动蛋白细胞骨架比对来稳健地诱导成骨细胞细胞骨架对准,并促进形成骨骼模拟骨骼的骨骼与方向的胶原蛋白/apatite consue。更多,我们的研究表明,通过激活Wnt/β -catenin信号传导途径,促进了这种骨比对过程,该途径是由强烈的细胞比对引导引起的核变形引起的。这种创新的材料对于个性化的下一代医疗设备至关重要,提供了高可定制性和骨微结构的积极恢复。调节细胞粘附和细胞骨架比对的创新方法激活了Wnt/β -catenin信号传导途径,对于骨分化和方向至关重要。的意义陈述:这项研究表明了一种新型的成骨剪裁条纹 - 微调Micropatened MPC-TI底物,该基材基于遗传机制诱导成骨细胞比对和骨基质方向。通过采用光反应性MPC聚合物,我们成功地微孔钛表面,创建了一种生物材料,从而刺激单向成骨细胞排列,并增强了天然骨模拟于天然骨模拟各向异性微观结构的形成。这项研究提出了第一种生物材料,该生物材料人为地诱导机械上各向异性骨组织的构建,并有望通过增强骨骼不同的诱导和方向来促进功能性骨骼再生 - 靶向骨组织的数量和质量。
糖尿病(DM)是一种慢性疾病,定义为持续性高血糖(1)。2011年DM的流行率在全球范围内为3.66亿,到2030年将上升到5.52亿(2)。dm与一系列并发症有关,包括微血管和大血管条件。DM的微血管并发症涉及对小血管的损害,尤其是在眼睛(视网膜病)和神经(神经病)中。视网膜病变会导致视力障碍甚至失明,而神经病会导致四肢麻木,刺痛或疼痛。在严重的情况下,它可能导致足部溃疡或截肢。另一方面,DM的大血管并发症与大血管有关,可能影响各种器官。缺血性心脏病,其中血液流向心脏肌肉,中风,中断了大脑的血液流向大脑,这是由于DM而可能发生的两个最常见的大血管问题。这些情况增加了糖尿病患者心脏病发作和中风的风险。微血管和大血管并发症都显着促进与DM相关的发病率和死亡率。因此,管理和预防这些并发症是糖尿病护理的重要方面,需要针对血糖控制,血压管理,脂质控制和生活方式改良的全面策略(3)。与DM相关的MSD的迹象包括肌肉疼痛,关节疼痛或僵硬,关节迁移率降低,关节肿胀,畸形以及手臂或腿部的销钉和针的感觉。某些MSD是糖尿病患者独有的。这些并发症显着影响糖尿病患者的生活质量和预期寿命。尽管由于新抗糖尿病药物的可用性,DM患者的预期寿命增加,但与其他并发症相比,MSD和相关疾病的患病率仍然受到研究(4-7)。DM中MSD的确切机制尚不清楚,但胶原蛋白沉积和结缔组织中进行性非酶糖基化的变化可能是原因(8,9)。MS并发症会影响身体的不同部位。软组织疾病,例如Cheiroarthropathy,腕管综合征,触发纤维,Dupuytren的染色器以及冻结的肩膀。charcot关节炎和痛风关节炎是糖尿病患者联合疾病的例子。骨骼受累,例如骨质疏松性和非遗传性疏松性骨折以及特发性骨骼肌肥大(10,11)。涉及DM患者(例如手腕,颈部,脊柱和膝盖)的不同位置(12)。糖尿病持续时间,葡萄糖水平控制,性别和年龄是肌肉骨骼并发症的某些危险因素(13,14)。各种研究,例如病例对照或队列研究,都在世界范围内进行,但这些研究的结果是有争议的。这种情况对全球临床和公共卫生决策具有影响,尤其是在发展中国家。确定DM和MSD之间的确切关联可能会帮助临床医生和专家减少影响并改善DM患者的生活质量。以及这项荟萃分析的结果有助于制定和更新临床指南,并改善该领域的循证医学(EBM)知识和政策。,基于此信息和先前研究的结果,DM是