一种高度疏水的离子液体(IL),3-氨基丙基 - tributylylylyphosphonium bis(三氟甲基索尔索尔)酰亚胺([AP 4443] [NTF 2]),并通过cel- lulose nananomearials(Cnms)(cnms)(cnms)(cnms)的表面进行了施用(cn)。修饰的CNM的化学结构,形态,热稳定性和表面疏水性都充分表征。从核磁共振光谱(1 H,13 C,19 F和31 P),傅立叶变换红外光谱,X射线光电光谱和X射线衍射证实[AP 4443] [ap 4443] [ntf 2]成功地将CNM的表面置换到2.5%的表面功能化。透射电子显微镜分析证实,修饰后保留了CNM的尺寸,但经过修饰的纤维素纳米晶体(CNC)的聚集显着。热重量分析表明,修饰的CNC从〜252℃至〜310°C的降解温度显着升高。修饰的纤维素纳米纤维(CNF)并未显示出热稳定性的升高。修饰的CNM悬浮液显示出对水的亲和力降低,并且在水性培养基中的聚集体形成。此外,水接触角测试表明,改进的CNM的疏水性增强了。这种修饰方法具有使用[AP 4443] [NTF 2] IL用于功能材料的潜力,以实现适合使用热塑料水性加工的新型疏水CNM,用于制造热稳定的复合材料,并用于电池的聚合物凝胶电解质。
摘要:使用简单的化学浴沉积方法,将纳米结构的铁二硫化物(FES 2)均匀沉积在再生纤维素(RC)和氧化的碳纳米管(CNT)基于氧化的碳纳米管(CNT)的复合膜上,以形成RC/CNT/FES/FES 2复合膜。RC/CNT复合膜是FES 2微球的均匀沉积的理想底物,这是由于其独特的多孔结构,较大的特定表面积和高电导率。polypyrole(PPY),一种导电聚合物,以提高其电导率和循环稳定性。由于FES 2具有高氧化还原活性和具有高稳定性和电导率的PPY的协同作用,RC/CNT/FES 2/PPY复合电极表现出出色的电化性能。用Na 2测试的RC/CNT/0.3FES 2/PPY-60复合电极因此,在1 mA cm-2的电流密度下,水溶液可以实现6543.8 mf cm-2的优异面积电容。电极在10,000电荷/放电周期后保留了其原始电容的91.1%。扫描电子显微镜(SEM)图像显示,在10,000周期测试后,在RC/CNT/0.3FES 2/PPY-60膜中形成了孔径为5-30μm的离子转移通道。由两种相同的RC/CNT/0.3FES 2/PPY-60复合电极组成的对称超级电容器设备提供了1280 MF CM - 2的高度电容,最大能量密度为329μWHCM - 2,最大功率密度为24.9 mW cm-w cm-w cm-w cm-w cm-w cm-2%,且86-2%2%。在40 mA cm-2处的循环在1.4 V的宽电压窗口进行测试时。这些结果表明,RC/CNT/FES 2/PPY复合电极的最大潜力用于制造具有高工作电压的高性能对称超级电容器。
标题:塑料通过基于等离子体的基于等离子体的解聚,利用水性和气态排放暴露于工作夏季的陈述塑料的增殖促成了巨大的环境损害,不仅损害了动物栖息地,而且还会损害食物链,从而通过释放毒素而成为公共健康风险(例如染料和修饰符)包含塑料中。通过垃圾填埋场处理塑料和能源回收,分别是由于半衰期和温室气体排放而不是实用的解决方案。机械回收是一种解决方案,但受聚合物类型的限制并产生较低质量的塑料。目前,塑料升级,塑料向更高价值产品的转化,由于高热量要求(用于热解)是能量密集型的。等离子体为塑料的解聚提供了一种更绿色的方法,还提供了升级的可能性,以制造高价值的产品,例如高级塑料和燃料。非热等离子体尤其是能源效率的,并且在空气上的运行意味着实施不需要外来的进料气体才能运行。在这里,血浆用于基本上通过细分将聚合物解构到其前体单体。意识到这种等离子体视觉的关键是优化气相和表面化学。与液体中聚合物去聚合有关的表面化学反应令人信服,因为环境是天然散热器和血浆本身输入反应性物种的储层。此外,自组织过程可以在局部大大增强反应性物种的局部电场和密度。自组织效应尚未充分探索。这项工作的目的是研究和表征来自聚合物粉末,颗粒的液体悬浮液的相互作用以及与低频等离子体射流产生的血浆和DC 1 ATM发光的血浆相互作用的分解产物。在这里,我们旨在阐明如何使用发射光谱和FTIR推断出的等离子体参数,包括表面自组织,诱导流体流动和液滴发射效应分解过程。
纳米级扩展和卢卡斯 - 瓦什伯恩模型的完善,对最新的实验数据和广泛的分子动力学模拟进行了详细分析,以研究纳米毛细血管内的快速水流和水吸收。通过对亲水性纳米通道的毛细血管升高的比较分析,意外的逆转预期趋势,异常峰,吸收长度低于3 nm的含量,在亲水性纳米渠道中发现了相同的物理起源,与Hydophobic Nananodophels中的流量相同。扩展的吸水模型适用于各种时空量表,并针对亲水性和疏水性纳米渠道的模拟结果和现有的实验数据进行了验证。
可耐醚电解质和高反应性锂金属阳极仍然限制了Li - S电池的商业应用。在LI - S细胞系统中,最常用的电解质溶剂是醚溶剂,例如二甲氧基乙烷(DME)和1,3-二氧烷(DOL),它们具有非常低的灰点(对于DME 6和1°C,DME 6和1°C的DOL 7)和高挥发性。这些醚电解质溶剂的这些特征确定使用Li - S细胞有很大的安全风险。对于反应性锂金属阳极,它可以很容易地与Li - S细胞中的基于醚的电解质和可溶性中间产物 - des des反应,并立即形成锂金属阳极表面上的固体电解质相(SEI)层。8不幸的是,SEI层倾向于不稳定和脆弱,这会导致严重的不可逆转能力降解。更平均,锂阳极的非均匀电化学溶解/沉积将导致锂树突的形成,这可以穿透分离器并引起严重的安全危害。为了解决上述问题,已经在更安全的电解质上为LI - S电池(例如固体电解质,离子液体,高浓度电解质,uorated溶剂和AME阻燃剂)进行了大量出色的工作。尽管这些作品取得了出色的改进,但它们也具有明显的缺陷,例如界面兼容性差和复杂的制备过程(固体电解质),9
摘要:环保溶液加工和光活性材料的低成本合成是有机太阳能电池商业化(OSC)的重要要求。尽管已经开发了各种水溶性受体,但可供处理的聚合物供体的可用性仍然非常有限。尤其是,现有聚合物供体的总体最高占用的分子轨道(HOMO)能级限制了功率转化效率(PCE)的进一步提高。Here, we design and synthesize two water/alcohol- processable polymer donors, poly[(thiophene-2,5-diyl)- alt -(2-((13-(2,5,8,11-tetraox- adodecyl)-2,5,8,11-tetraoxatetradecan-14-yl)oxy)-6,7-difluoroquinoxaline-5,8-diyl)] (p(qx8o-t))和poly [(硒苯2,5-二烯基) - alt-(2 - (((13-(2,5,5,8,11-(2,5,8,11-tetraoxadodec- yl))-2,5,5,8,8,11-tetraoxateTradecan-14-yl-14-yl)-6,7-6,7-二氟quinoxaline-5,5,8-piyylyyyyl)寡醇(乙二醇)(OEG)侧链,具有深HONO能级(〜- 5.4 eV)。以降低成本的几个合成和纯化步骤来实现聚合物的合成。理论计算发现,与烷基化的烷基化对应物相比,基于OEG的聚合物中观察到的带隙降低的介电环境变化是造成观察到的带隙降低的。这项研究为低成本,可加工的聚合物供体设计和具有高V OC的水性处理的OSC的制造提供了重要的线索。关键字:寡素(乙烯甘油),低成本,可供处理的全聚合物太阳能电池,生态兼容性,开路电压值得注意的是,基于p(qx8o-t)和poly [(n,n,n'--- bis(3-(2-(2-(2-(2-甲氧基) - 乙氧基)乙氧基)-2 - ((2-(2-(2-(2-(2-(2-甲氧基乙氧基)乙氧基)乙氧基)乙氧基)乙氧基) - 甲基) - 甲基)丙烯酸苯甲酸苯二甲酸苯乙烯1,4,5,8- bis(dicarbobimide)bis(dicarbobimide)(dicarbobimide)-2 boximide)-2,6-diene-andene-andene---------------------(2,2,5,5,5,5,5,5,5,5,5,5,5,5,5,5,(2) P(ndideg-t))活性层的PCE为2.27%,高开路电压(V OC)接近0.8 V,这是迄今为止据报道的AQ-ASPC的最高值之一。
已经证明,锂,钠,钠和钾离子在水溶液中,可以使S电极的动力学和完整电池的性能受益。10,17个流量电池(FBS)将满足上述要求。18 FBS最具吸引力的特征是设计灵活性,使功率和能量的设计灵活性克服了水溶液电池(AZSBS)的低排放高原问题。Zn-S夫妇已经在实心悬架流量电池中进行了测试,并且仅显示潜在电流响应,没有骑自行车的性能。19 Zn,S和Zn的固体到固相变的缓慢固体转移反应阻碍了骑自行车的性能。使用阳离子交换膜可以使Zn – S系统可充电,避免同时避免使用Zn-S系统,像多硫化物 - 碘,20多硫化物 - 二酰胺,21多硫化物 - 锰酸22和S-Manganese 23 FBS一样。 尽管已广泛开发了Zn-S电池,基于Zn的FBS,但尚未探索Zn – S流动系统。 24在本文中,我们首次演示了碱性Zn -s Flow Battery(AZSFB)。 溶解在碱性溶液中的活性材料,在5 mA cm 2时使排放高度为0.5 V。 同时,通过两步过程制备了无粘合镍的电极,以改善S氧化还原反应的动力学。 所制备的电极由微纳米化缺陷和镍氧化物颗粒组成,在半细胞测试和FBS中,S氧化还原反应的极化大大降低了。像多硫化物 - 碘,20多硫化物 - 二酰胺,21多硫化物 - 锰酸22和S-Manganese 23 FBS一样。尽管已广泛开发了Zn-S电池,基于Zn的FBS,但尚未探索Zn – S流动系统。24在本文中,我们首次演示了碱性Zn -s Flow Battery(AZSFB)。溶解在碱性溶液中的活性材料,在5 mA cm 2时使排放高度为0.5 V。同时,通过两步过程制备了无粘合镍的电极,以改善S氧化还原反应的动力学。所制备的电极由微纳米化缺陷和镍氧化物颗粒组成,在半细胞测试和FBS中,S氧化还原反应的极化大大降低了。因此,使用该正电极的AZSFB的电压效率(VE)达到了10 mA CM 2时的78%,几乎是使用epristineGrapheenefelt(GF)Electerode.withlowCostandHigh理论能力的两倍,该AZSFB具有巨大的进一步研究潜力。在构造新系统FB之前,进行了环状伏安法(CV),以测试Active
Sheffield Sheffield Sheffield工程学院机械工程系40 100,Turkey E转化能源研究中心,谢菲尔德大学,谢菲尔德S9 1ZA,英国F型化学与工艺工程系,Strathclyde大学,格拉斯哥大学,格拉斯哥G1 1XL,英国G1 1xl,G1Sheffield Sheffield Sheffield工程学院机械工程系40 100,Turkey E转化能源研究中心,谢菲尔德大学,谢菲尔德S9 1ZA,英国F型化学与工艺工程系,Strathclyde大学,格拉斯哥大学,格拉斯哥G1 1XL,英国G1 1xl,G1Sheffield Sheffield Sheffield工程学院机械工程系40 100,Turkey E转化能源研究中心,谢菲尔德大学,谢菲尔德S9 1ZA,英国F型化学与工艺工程系,Strathclyde大学,格拉斯哥大学,格拉斯哥G1 1XL,英国G1 1xl,G1Sheffield Sheffield Sheffield工程学院机械工程系40 100,Turkey E转化能源研究中心,谢菲尔德大学,谢菲尔德S9 1ZA,英国F型化学与工艺工程系,Strathclyde大学,格拉斯哥大学,格拉斯哥G1 1XL,英国G1 1xl,G1Sheffield Sheffield Sheffield工程学院机械工程系40 100,Turkey E转化能源研究中心,谢菲尔德大学,谢菲尔德S9 1ZA,英国F型化学与工艺工程系,Strathclyde大学,格拉斯哥大学,格拉斯哥G1 1XL,英国G1 1xl,G1Sheffield Sheffield Sheffield工程学院机械工程系40 100,Turkey E转化能源研究中心,谢菲尔德大学,谢菲尔德S9 1ZA,英国F型化学与工艺工程系,Strathclyde大学,格拉斯哥大学,格拉斯哥G1 1XL,英国G1 1xl,G1
