Michael Everett(Mike)是位于肯尼亚内罗毕的ERM East Africa的执行合伙人。Mike在一系列环境学科中拥有超过25年的经验。他的背景包括在政府服务中担任水文学家的全职工作,作为纳米比亚里奥廷托(Rössing)的RössingRiraniumMine的首席环保主义者,已有五年多了,并且在2006年加入ERM之前,是2001年至2006年的独立环境顾问。Mike作为首席顾问或协调员参与了整个南非和东非发展社区的许多项目。这些包括符合非洲IFC绩效标准的一系列基础设施项目的大量ESIA研究,包括道路,传输线,绿地采矿地点以及许多电力项目,主要是在可再生能源领域。Mike还针对许多国家和广泛领域的众多DFI和私募股权(PE)资金进行了众多ESG审核。此外,Mike还负责或直接实施的环境和社会管理系统(ESMS),包括包括Rössing铀,Anglogold的Navachab Gold Mine,Nampower(Namibia's Power Ultility)和其他各个部门的其他组织,包括Agra,包括Nairobi,Cbe Anyyy,CBE,CBE,包括Agra,包括Agra,包括Agra,包括Agra,CBE,包括Agra,CBE,包括Agra,包括Agra,CBE,包括Agra,包括Agra,包括Agra,namibia的Power Ultility)。
美国地质调查局将 Price 流速计的良好流量测量结果归类为在真实值的 ±5% 以内。有些人认为,这种假设的误差是乐观的。无论如何,在许多河流系统中,±5% 意味着 ±1 英尺的水位误差。声速计提供连续记录,但当前的美国地质调查局技术会校准这些仪表以重现 Price 流速计的测量结果,因此 AVM 与流速计一样准确。船测总是值得怀疑。人们认为,使用在船上安装三根光束的声速计的较新技术要好得多。还应仔细检查已发布的流量记录。连续流量是根据流量测量(通常每两周或每月进行一次)和连续水位记录计算得出的。测量结果被汇编成流量曲线,后续测量与流量曲线的偏差用于定义偏移。偏移是由于非稳定流效应(环状流量曲线)和短期地貌变化导致的流量曲线的暂时变化。记录的质量取决于流量测量的频率和水文学家的技能。唯一的方法是将流量测量值与流量记录进行比较。不过,如果测量频率不高,则只能将流量记录应用于模型,看看水位记录的再现效果如何。记住!大多数已发布的流量记录都是平均日流量。建模者必须以某种方式为这些记录分配时间值。
学科列表(功能代码) _____________________________________________________________________________________ 代码说明 代码说明 01 声学工程师 32 水利工程师 02 行政 33 水文测量员 03 航空摄影师 34 水文学家 04 航空工程师 35 工业工程师 05 考古学家 36 工业卫生学家 06 建筑师 37 室内设计师 07 生物学家 38 土地测量员 08 CADD 技术员 39 景观建筑师 09 制图师 40 材料工程师 10 化学工程师 41 材料处理工程师 11 化学家 42 机械工程师 12 土木工程师 43 采矿工程师 13 通信工程师 44 海洋学家 14 计算机程序员 45 照片解译员 15 施工检查员 46 摄影测量师 16 施工经理 47 规划师:城市/区域 17 腐蚀工程师 48 项目经理 18成本工程师/估算师 49 遥感专家 19 生态学家 50 风险评估师 20 经济学家 51 安全/职业健康工程师 21 电气工程师 52 卫生工程师 22 电子工程师 53 调度员 23 环境工程师 54 安全专家 24 环境科学家 55 土壤工程师 25 消防工程师 56 规范撰写人 26 法医工程师 57 结构工程师 27 基础/岩土工程师 58 技术员/分析师 28 大地测量员 59 毒理学家 29 地理信息系统专家 60 运输工程师 30 地质学家 61 价值工程师 31 医疗设施规划师 6
David Tart 区域植被生态学家,犹他州奥格登山间地区 C. Kenneth Brewer 景观生态学家/遥感专家,北部地区,蒙大拿州米苏拉 Brian Schwind 遥感专家,太平洋西南地区,加利福尼亚州萨克拉门托 Clinton K. Williams 植物生态学家,犹他州奥格登山间地区 Ralph J. Warbington 遥感实验室经理,太平洋西南地区,加利福尼亚州萨克拉门托 Jeff P. DiBenedetto 生态学家,蒙大拿州比林斯卡斯特国家森林公园 Elizabeth Crowe 河岸/湿地生态学家,俄勒冈州本德德舒特斯国家森林公园 William Clerke 遥感项目经理,南部地区,佐治亚州亚特兰大 Michele M. Girard 森林水文学家/生态学家,亚利桑那州坎普维德普雷斯科特国家森林公园 Hazel Gordon 植被生态学家,太平洋西南地区,加利福尼亚州萨克拉门托 Kathy Sleavin 技术支持组组长,自然资源信息系统 (NRIS) 实地采样植被 (FSVeg),科罗拉多州柯林斯堡 Patricia C. Krosse 生态与植物学项目经理,通加斯国家森林,阿拉斯加州凯奇坎 Mary E. Manning 区域植被生态学家,北部地区,蒙大拿州米苏拉 Lowell H. Suring 野生动物生态学家,落基山研究站,爱达荷州博伊西 Michael Schanta 资源信息经理,马克吐温国家森林,密苏里州罗林斯 John Haglund 生态学家,NRIS Terra,俄勒冈州桑迪 Bruce Short 木材销售/造林项目组长,落基山脉地区,科罗拉多州莱克伍德 David L. Wheeler 牧场植被组组长,落基山脉地区,科罗拉多州莱克伍德
我写这封信是为了回应 2024 年 4 月 25 日 PCAST 就国家地下水危机提出建议的请求,这场危机对美国人民的生活质量构成了日益严重的威胁。我是明尼苏达大学的教授,也是国际地球科学信息委员会的主席。我曾担任明尼苏达州地质学家二十年,担任州地质学家协会主席,并担任国家地理空间咨询委员会六年成员。我曾担任加拿大地质调查局的研究科学家近二十年,并担任加拿大地球科学联合会主席。我拥有科罗拉多大学的博士学位。你问题的答案就是以上所有。我们需要概念性的研究、空间性的制图、时间性的监测和将前述内容组合在一起的建模,以支持管理,确保可持续的抽水率和保护地下水质量。我们正在做所有这些,但我们忘了做一件事——制图。哎呀。地下水建模者将制图称为概念模型和网格。我们有许多精美的 2D 和 3D 地图,它们大概涵盖了全国四分之一的地区。太棒了。这就像用四分之一的碎片拼凑起来的拼图。我这封信的结论是,我们需要全面绘制美国的地质图。没有地图,你就会迷路。没有人认为飞行员不需要地图。没有人会在没有地图的情况下驾车穿越州。没有人说我们不需要谷歌地图,因为我们已经有了折叠的纸质地图。但对于地下水,我们只能即兴发挥。这是因为地下水是看不见也想不到的。地质学家无法想象水,水文学家无法想象地质。这是个问题。我们需要像对待天气、气候、地表水和土壤一样对待地下水。我们需要一个针对每个州、州级模型和国家模型的多县地下水模型网络。我们需要将地下水完全添加到国家水模型中。这是一个数字孪生——一个无限期持续的预测系统,它接收数据并支持干预。缺少的部分是绘图。20 世纪 90 年代,我被要求发明绘制区域地下水系统地图的程序。尽管这个试点项目已经存在多年,但它仍然很有名。二十多年来,我一直在共同领导关于这些方法的国际研讨会,尽管这些方法的采用速度很慢。“如果它没有出现在报纸上,那就不是问题。”现在,区域地下水可持续性已经出现在报纸上。是时候采取行动了。
深度测定 1.简介 深度测定是水文测量员的一项基本任务,需要对介质、水下声学、可用于深度测量的大量设备、用于姿态和升沉测量的互补传感器以及适当的程序有具体的了解,以实现并满足国际推荐的精度和覆盖标准,如 IHO 出版物 S-44 第 5 版所述。铅垂线和测深杆是最早用于直接测量水深的方法。它们的简单操作原理确保了它们在许多世纪中持续使用。源自军用声纳的单波束回声测深仪是一项重大发展,自 20 世纪中期以来一直用于水文测量。在过去十年中,水文测量在深度测量技术和方法方面经历了概念上的转变。多波束回声测深仪 (MBES) 和机载激光测深系统 (ALS) 现在几乎可以覆盖整个海底并进行深度测量。高数据密度和高采集率产生了巨大的测深数据集和大量辅助数据。1998 年,编写第 4 版的 S-44 工作组对深度测量设备的最新技术进行了评估,结果如下:“单波束回声测深仪在浅水中的精度已达到亚分米级。市场上有各种不同频率、脉冲率等的设备。可以满足大多数用户,尤其是水文学家的需求。(…) 多波束回声测深仪技术正在迅速发展,如果使用适当的程序,并且系统的分辨率足以正确检测航行危险,则多波束回声测深仪技术具有进行准确和全面海底搜索的巨大潜力。机载激光测深是一项新技术,可以为浅水清澈水域的调查提供显着的生产力提升。机载激光系统能够测量 50 米或更深的深度。”尽管有这些新技术,但单波束回声测深仪 (SBES) 目前仍然是全球水文调查中使用的传统设备。这些回声测深仪也从模拟记录发展到数字记录,具有更高的精度和准确性,并具有可满足各种目的的特定功能。当需要全海底声波探测时,MBES 已成为深度测定的宝贵工具。数字回声测深仪与运动传感器、卫星定位系统(如 GPS)和数据采集软件的使用相结合,优化了生产效率,并相应减少了测量操作人员。越来越多的国家水文局 (NHO) 采用多波束技术作为收集新海图制作的水深数据的首选方法。
美国地质调查局,加利福尼亚水科学中心将在最近更新的中央谷水文Model V2(CVHM2)上提供为期三天的动手研讨会。该研讨会由加利福尼亚水与环境模型论坛(CWEMF)主办,并由加利福尼亚水资源部可持续地下水管理办公室和美国中太平洋地区办事处的美国填海局赞助。CVHM2模拟了加利福尼亚州中部山谷中的耦合地下水流,地表水流和陆地表面过程。该模型具有多种增强功能:一种新版本的ModFlow-Owhm,模拟的沉降模拟,包括延迟和非延迟床,托管含水层补给(MAR),在整个域中,散布多个垫圈的井,瓷砖排水管,瓷砖排水管的多个井井有条,以及来自未盖的水域的流入。更多的细节已添加到水平衡子区域,流量网络,转移,土地利用,含水层的特性以及地下水水平以及土地沉降观测值中。CVHM2提供了一种能够在水管理人员可以用来评估水管理系统对水管理变化,土地利用变化和气候变异性的水文系统响应的区域尺度上进行准确的工具。CVHM2输出提供模拟的地下水水平,地下水存储,土地沉降以及地表水和地下水交换,可用于帮助决策者有效地管理供水供应,尤其是在《可持续地下水管理法》(SGMA)的框架内。研讨会将概述CVHM2的功能并审查主要发现。将在研讨会之前提供材料。研讨会将涵盖CVHM2开发中使用的数据集和模型文件,并查看模型校准方法和结果。其余的研讨会由动手练习组成,这些练习将教会参与者如何运行CVHM2以及如何修改输入文件以开发水管理或气候变化方案。在开发的每种情况下,参与将学习和练习如何在过程进行后处理和可视化CVHM2模型结果,重点是与SGMA可持续性指标有关的结果。培训的重点是CVHM2,但是培训中学到的技能和工具应使任何使用ModFlow-OwHM的人受益。参与者将需要携带一台用CVHM2,预处理和后处理脚本以及Python环境预加载的笔记本计算机来运行这些脚本。参与者的计算机应具有能够使用大型模型文件(例如TextPad或Notepad ++)的文本编辑器,这是一个用于查看和操纵数据集(例如Excel)的电子表格程序,以及用于可视化结果(例如Arcgis Pro)的GIS软件。请注意,参与者将需要带一个照片ID并通过安全筛选以访问培训室。请发送电子邮件至Jon Traum(Jtraum@usgs.gov),以了解与研讨会的准备有关的技术问题。课程讲师:Jon Traum,PE,USGS,水文学家
第 3 章 深度测定 1.简介 深度测定是水文测量员的一项基本任务,需要对介质、水下声学、可用于深度测量的大量设备、用于姿态和升沉测量的互补传感器以及适当的程序有具体的了解,以达到并满足国际推荐的精度和覆盖标准,如 IHO 出版物 S-44 第 5 版所述。铅垂线和测深杆是最早用于直接测量水深的方法。它们的简单操作原理确保了它们在许多世纪中持续使用。源自军用声纳的单波束回声测深仪是一项重大发展,自 20 世纪中期以来一直用于水文测量。在过去十年中,水文测量在深度测量技术和方法方面经历了概念上的转变。多波束回声测深仪 (MBES) 和机载激光测深系统 (ALS) 现在几乎可以覆盖整个海底并进行深度测量。高数据密度和高采集率产生了巨大的测深数据集和大量辅助数据。1998 年,编写第 4 版的 S-44 工作组对深度测量设备的最新技术进行了评估,结果如下:“单波束回声测深仪在浅水中的精度已达到亚分米级。市场上有各种不同频率、脉冲率等的设备。可以满足大多数用户,尤其是水文学家的需求。(…) 多波束回声测深仪技术正在迅速发展,如果使用适当的程序,并且系统的分辨率足以正确检测航行危险,则多波束回声测深仪技术具有进行准确和全面海底搜索的巨大潜力。机载激光测深是一项新技术,可以为浅水清澈水域的调查提供显着的生产力提升。机载激光系统能够测量 50 米或更深的深度。”尽管有这些新技术,但单波束回声测深仪 (SBES) 目前仍然是全球水文调查中使用的传统设备。这些回声测深仪也从模拟记录发展到数字记录,具有更高的精度和准确性,并具有可满足各种目的的特定功能。当需要全海底声波探测时,MBES 已成为深度测定的宝贵工具。数字回声测深仪与运动传感器、卫星定位系统(如 GPS)和数据采集软件的使用相结合,优化了生产效率,并相应减少了测量操作人员。越来越多的国家水文局 (NHO) 采用多波束技术作为收集新海图制作的水深数据的首选方法。
执行摘要 本研究旨在分析帕索罗布尔斯子流域、AVA 和圣路易斯奥比斯波县的农业和酿酒业的经济影响,并评估帕索罗布尔斯子流域地下水可持续性计划可能对农业行业造成的影响。该计划将在 2020 年至 2040 年及以后减少水分配和/或增加流域的水价。提交给州水资源部的地下水可持续性计划指出,如果用水和降水模式继续下去,根据水文学家的报告,该流域每年将透支 14,000 英亩英尺的水,约占流域总抽水量的 17%。地下水是该子流域农业灌溉水的唯一来源。我们分析了用水量分别减少 10%、17% 和 23% 的情景。我们展示了灌溉农业的经济影响以及该地区酿酒厂水果产量下降的影响。灌溉农业减少给帕索次流域经济造成的损失在 4950 万美元至 1.463 亿美元之间,就业岗位减少在 459 至 1289 个之间,具体取决于水量减少。葡萄酒价值损失的经济影响更为显著,导致次流域整体经济损失 1.834 亿美元至 4.58 亿美元,帕索罗布尔斯酿酒厂产值损失 8380 万美元至 2.156 亿美元。由于种植者、葡萄酒生产商和消费者的销售和支出减少,PR 次流域经济的失业人数估计为 1358 至 3351 人。帕索罗布尔斯葡萄酒行业预计将失去 376 至 967 个工作岗位。本文提供的分析表明,帕索盆地葡萄酒行业的总经济价值和就业岗位可能会损失 12% 至 32%,圣路易斯奥比斯波县所有葡萄酒厂的经济产出和就业岗位可能会损失 10% 至 26%。就整个农业经济的经济价值损失而言,我们的分析和圣路易斯奥比斯波县农业专员办公室赞助的一项独立研究都表明,圣路易斯奥比斯波县葡萄酒厂为整个圣路易斯奥比斯波县经济贡献了近 8.6 亿美元。我们的分析表明,如果发生水资源削减,圣路易斯奥比斯波县葡萄酒行业的总产出价值可能会损失 21% 至 53%。灌溉农业总体上也将遭受重大损失,圣路易斯奥比斯波县生产农业的总价值预计将下降 4% 至 11%。本研究旨在概述灌溉农业地下水使用量减少可能产生的潜在经济影响。水资源减少的经济影响是巨大的,将导致当地商业环境的重组。这项分析可能会促使当地官员寻求其他水源,并找到创造性的解决方案来实现帕索罗布尔斯子流域地下水的可持续性。结果汇总表列于下页。
应用。土壤水分含量会影响生物圈的生理生物成分,并通过表面能和水分通量将地球表面与大气联系起来。SM 是大气的水源,通过陆地的蒸散,包括植物蒸腾和裸土蒸发。此外,SM 条件可以通过控制土壤的渗透能力和将降雨分配到径流来影响陆地表面的水文模式。生态水文学侧重于植被 - 水 - 气候关系之间的联系,已发现其对 SM 动态可用性具有复杂的依赖性(Garcia-Estringana 等人2013 年;Mulebeke 等人2013 年)。所有这些过程都高度体现了 SM 的非线性行为和复杂的反馈机制。因此,SM 的量化条件是建模农业、水文气候和气象属性的重要输入。一组成分以不同的时间和空间尺度控制陆地表面 SM 的动态。因此,天气和气候的变化都受到 SM 条件的影响。Reynolds (1970) 将 SM 分为静态(例如土壤质地和地形)和动态(例如降水和植被)控制要素。对 SM 的评估取决于相关变量的状况。这些元素中的许多都是相互关联的,并且在空间和/或时间上各不相同,这使得识别 SM 模式及其驱动变量之间的关系变得复杂。2021 )。景观要素,包括地形、植被和土地利用,是 SM 的空间和时间控制要素。SM 的空间变化与地形特征(例如坡度、海拔和地形湿度指数)密切相关。因此,在以前的一些研究中,地形属性被用于通过回归、地理空间和水文建模来估计 SM 模式的参数(例如,参见 Western 等人。1999 、2004 ;Adab 等人。2020 ;Li 等人。此外,各种研究都注意到了植被覆盖(例如类型和分布)对 SM 变化的影响。此外,空间属性对植被的影响(通常从遥感图像中解释)也被用于生成 SM 模式(Mohanty 等人。2000 ;Hupet & Vanclooster 2002 )。通常,SM 的长期时间序列可以在空间上检测到与天气或水文条件。在较大的研究区域中,网络和测量 SM 的种类仍然受到限制,此外,由于过度变化和参数之间缺乏相关性,从现场测量中获得可靠的近似值是一项具有挑战性的任务。在 SM 的几个应用中,各种各样的卫星产品都有可能帮助水文学家测量大面积的 SM 状况。由于遥感器无法直接测量 SM 含量,因此需要提取可以解释测量信号和 SM 含量之间关系的基于数学的方法来解释测量信号和 SM 含量之间的关系。2021 ; Zhu 等人。2021 )。自 20 世纪 70 年代以来,已经开发出一些遥感技术,通过测量从光学到微波领域的电磁波谱特定区域来分析和绘制 SM(Musick & Pelletier 1988;Engman 1991;Wang & Qu 2009)。微波遥感技术包括 Aqua 卫星上的先进微波扫描辐射计-地球观测系统 (AMSR-E)(自 2002 年起)、土壤湿度和海洋盐度卫星(SMOS,自 2009 年起)、多频扫描微波辐射计(MSMR,自 1999 年起)和土壤湿度主动被动 (SMAP)(自 2015 年 1 月起),目前正在运行,每天在全球范围内生成卫星记录。虽然这些方法提供了许多测量大规模 SM 的技术,但它们的分辨率几乎很低(通常约为 25 公里),不再适用于小集水区或学科尺度。光学/热红外遥感记录被称为表面温度/植被指数法,可提供更高的分辨率(约 1 公里)。最近,Zhang & Zhou(2016)提出了一种新方法,可以通过光学/热遥感进行 SM 估计,该方法特别依赖于 SM 与表面反射率和温度或植被指数之间的关联。该领域的检索策略,如热惯性,强调土壤热特性或三角测年技术,表明 SM、归一化差异植被指数 (NDVI) 和给定区域的陆地表面温度 (LST) 之间的联系正在不同的应用中使用。然而,由于缺乏足够的空间数据(包括地形或低密度植被覆盖图和数据),它们的应用受到限制。用于估计 SM 的遥感植被指数(例如,NDVI、归一化差异水指数 (NDWI) 和归一化多波段干旱指数 (NMDI))是合适的替代方案;然而,SM 的分布不能通过单一参数和通过计算出特定地表坡向强度之间的参数修改来预测。人们已经做出了大量努力,通过建立遥感 LST 与植被指数之间的联系来利用卫星图像估计 SM(例如,Dari 等人。遥感图像的实际优势之一是,除了地形数据外,还可以通过图像获得具有高空间分辨率(30 米至 1 公里)的植被和 LST 参数。利用从遥感图像中提取的结构化景观因素而不是现场测量来预测 SM 状况,可以快速实时地跟踪 SM 状况。