抽象的土地使用变化深刻影响水文过程和各种规模的水质,因此需要对可持续水资源管理有全面的了解。本文研究了Gap-Cheon流域中土地使用变化的含义,分析了2012年和2022年的数据,并使用未来的土地利用模拟(FLUS)模型预测到2052年的变化。该研究采用水文模拟程序 - 孔(HSPF)模型来评估水量和质量动态。确定了七个土地利用类别,并检查了它们的进化,揭示了城市,农业,草原,湿地和森林地区的重大转变。使用确定系数(r 2),偏差百分比(PBAI)和平均绝对误差(MAE)评估了观察到数据的模型性能。结果表明,土地使用变化的动态性质,突出了城市化,农业和森林地区的转变。值得注意的是,该研究探讨了这些变化对水数量和质量的后果,仔细检查地表径流,蒸发,流量和养分负荷。城市绿色空间作为关键缓解剂,调节径流并增强吸水水。森林(植被)在维持水平衡方面也起着至关重要的作用,而湿地则作为减少洪水和水质改善的天然过滤器。这些发现强调了知情的土地使用计划的重要性,将城市绿色空间,森林和湿地视为可持续分水岭管理的组成部分。随着社会面临环境挑战,这项研究有助于更深入地了解人类活动与自然环境之间的复杂互动,强调对土地利用计划中基于自然解决方案的需求,以实现弹性和平衡生态系统。
摘要:量化源自气象不确定性的水文建模不确定性至关重要,但在全球范围内尚未探索。这项研究将一种新型的集合气象数据集与基于过程的水文模型相结合,评估了全球约有300万个subbasins的沉淀和温度不确定性的影响。我们介绍了两个指标来识别不确定性热点:一个追踪不确定性传播到投入到模型输出的不确定性传播,而另一个相对于水文气候学的不确定性幅度(即,不确定性与氛围平均值之间的比率)。我们的发现揭示了水文变量对降水和温度不确定性的组合变量的不同不确定性响应。对于路由河流流,不确定性传播在tropcal雨林和欧洲(斯堪的纳维亚半岛除外),但在沙漠中较弱,这部分归因于碱花比的区域差异。相比之下,两个不确定性指标均表明冰冻圈区域和主要河流下游区域的流量不确定性较低。观察到的实质性建模不确定性,尤其是在南半球和较少发达的地区,强调了改善全球空间气象数据集的必要性。
WMO指定特定协调活动的区域或专业中心。全球气候监测中心提供了关键的输入,以生成气候指标来描述全球气候的状态。区域专业气象中心(RSMC)是WMO卓越中心,创建区域产品和区域气候中心(RCC)提供了支持区域和国家气候活动的长期预测。尽管这些中心在跨较大地区的NMHS连接和指导NMHS中发挥了作用,但它们没有任务在各个国家内发布公共警告(例如通过发出警告)。一些区域中心,例如ICPAC,IGAD东非地区气候中心与该地区国家社会的互动历史悠久,并与国际红十字会和红色新月协会(IFRC)的国际联合会(IFRC)保持了谅解备忘录。
摘要。预测水流对于闪水液预警系统和在气候变化下管理水资源至关重要。然而,有限的流量观测将高级预测技术限制为衡量的盆地,使世界上大部分的未加州盆地处于不利地位。因此,为未加州盆地(PUB)开发可靠的预测方法至关重要。在过去的二十年中,卫星驱动的产品(例如ERA5)对于增强降水和气象测量至关重要,尤其是在复杂的地形和不断变化的气候条件下。这项研究的重点是摩洛哥的干旱和半干旱地区,其中水资源管理对农业,城市化和经济稳定至关重要。使用ERE5数据集(提供高分辨率的大气信息),该研究评估了卫星衍生的降水量,以针对日常时标的伯纳特河的Sgatt站的地面测量。各种统计指标评估ERE5在代表每日降水及其整合到GR4J-Cemaneige模型中进行流动模拟时的性能。结果突出了ERA5在改善未加州盆地中降雨表示和水文建模方面的潜力,与地面观测相比,验证了其在模拟降雨事件中的有效性。这项工作强调了卫星驱动产品在增强水文预测和支持数据砂区域的水管理方面的重要性。
Adamson, PT、Rutherfurd, ID、Peel, MC、Conlan, IA,2009 年。湄公河的水文学。引自:Cambell, I.(编辑),湄公河:国际河流流域的生物物理环境,第一版。Elsevier,第 53 – 76 页。Alcayaga, H.、Belleudy, P.、Jourdain, C.,2012 年。流域尺度上水电结构对河流扰动的形态学建模。引自:Mu ˜ noz, RM(编辑),河流流量 2012。河流水力学国际会议,第 537 – 544 页。 Arias, ME、Cochrane, TA、Kummu, M.、Lauri, H.、Holtgrieve, GW、Koponen, J.、Piman, T.,2014。水电和气候变化对东南亚最重要湿地生态生产力驱动因素的影响。生态模型 272,252 – 263。Ashouri, H.、Hsu, K.、Sorooshian, S.、Braithwaite, DK、Knapp, KR、Cecil, LD、Nelson, BR、Prat, OP,2015。PERSIANN-CDR:来自多卫星观测的每日降水气候数据记录,用于水文和气候研究。美国流星学会通报 96(1),69 – 83。 Ayugi, B., Tan, G., Gnitou, GT, Ojara, M., Ongoma, V., 2020. 罗斯贝中心区域气候模型对东非降水的历史评估和模拟。大气研究 232, 104705 。Bao, Z., Zhang, J., Wang, G., Fu, G., He, R., Yan, X., Jin, J., Liu, Y., Zhang, A., 2012. 中国北方海河流域径流量减少的归因:气候变化还是人类活动?水文地质学杂志 460 – 461, 117 – 129 。Bartkes, M., Brunner, G., Fleming, M., Faber, B., Slaughter, J., 2016. HEC-SSP 统计软件包用户手册 2.1 版。美国陆军工程兵团。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2018a。澜沧江梯级大坝对越南湄公河三角洲流态的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (4), 487 – 492。Binh, DV、Kantoush, S.、Mai, NP、Sumi, T.,2018b。越南湄公河三角洲在增加管制流量和河流退化的情况下的水位变化。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 871 – 876。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2019。湄公河流域的长期排放、水位、盐度浓度和降水。 Mendeley Data V3 。Binh, DV、Kantoush, S.、Sumi, T.,2020. 上游水坝导致越南湄公河三角洲长期排放和沉积物负荷的变化。地貌学 353,107011。Cook, BI、Bell, AR、Anchukaitis, KJ、Buckley, BM,2012。积雪和降水对湄公河下游流域旱季径流的影响。地球物理研究杂志 117,D16116。Dang, TD、Cochrane, TA、Arias, ME、Van, PDT、Vries, TTD,2016。湄公河洪泛区水利基础设施建设带来的水文变化。水文过程 30,3824 – 3838。 Darby, SE、Hackney, CR、Leyland, J.、Kummu, M.、Lauri, H.、Parsons, DR、Best, JL、Nicholas, AP、Aalto, R.,2016 年。热带气旋活动变化导致巨型三角洲河流沉积物供应减少。《自然》276 – 279。Eslami, S.,Hoekstra, P., Trung, NN, Kantoush, SA, Binh, DV, Dung, DD, Quang, TT, Vegt, MVD,2019。人为沉积物匮乏导致湄公河三角洲的潮汐放大和盐入侵。Sci. Rep. 9,18746。Fan, H., He, D., Wang, H.,2015。筑坝澜沧江-湄公河主流的环境后果:综述。Earth-Sci. Rev. 146,77 – 91。Ha, TP, Dieperink, C., Tri, VPD, Otter, HS, Hoekstra, P.,2018a。越南湄公河三角洲适应性淡水管理的治理条件。J. Hydrol. 557,116 – 127。 Ha, DT、Ouillon, S.、Vinh, GV,2018b。根据高频测量(2009 – 2016 年)得出的湄公河下游水和悬浮沉积物预算。水 10, 846 。Harris, I.、Osborn, TJ、Jones, P.、Lister, D.,2020。CRU TS 月度高分辨率网格化多元气候数据集第 4 版。科学数据。https://doi.org/10.1038/s41597-020-0453-3)。Hecht, JS、Lacombe, G.、Arias, ME、Dang, TD,2019。湄公河流域的水电大坝:其水文影响回顾。水文杂志 568, 285 – 300 。 Hoang, L.、Ngoc, TA、Maskey, S.,2016。一种用于估算越南湄公河三角洲 CERES-rice 模型参数的稳健参数方法。大田作物研究。196,98 – 111。Hoanh, CT、Jirayoot, K.、Lacomne, G.、Srunetr, V.,2010。气候变化和发展对湄公河流量制度的影响:首次评估 – 2009 年。MRC 技术论文第 29 号。湄公河委员会,老挝万象。Jordan, C.、Tiede, J.、Lojek, O.、Visscher, J.、Apel, H.、Nguyen, HQ、Quang, CNX、Schlurmann, T.,2019。重新审视湄公河三角洲的采砂 – 目前当地沉积物短缺的规模。 Rep. 9,17823 。 Kantoush, S.、Binh, DV、Sumi, T.、Trung, LV,2017。上游水电站大坝和气候变化对越南湄公河三角洲水动力学的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 73 (4),109 – 114 。Kendall, AMG,1938。一种新的秩相关性测量方法。Oxford J. 30,81 – 93 。Kiem, AS、Ishidaira, H.、Hapuarachchi, DP、Zhou, MC、Hirabayahi, Y.、Takeuchi, K.,2008。使用高分辨率日本气象局 (JMA) AGCM 模拟湄公河流域未来水文气候学。水文过程。22,1382 – 1394 。 Kingston, DG、Thompson, JR、Kite, G.,2010。湄公河流域气候变化预测排放量的不确定性。水文地球系统科学讨论。7,5991 – 6024。Kondolf, GM、Rubin, ZK、Minear, JT,2014。湄公河上的水坝:累积沉积物匮乏。水资源研究。50,5158 – 5169。 Kondolf, GM, Schmitt, RJP, Carling, P., Darby, S., Arias, M., Bizzi, S., Castelletti, A., Cochrane, TA, Gibson, S., Kummu, M., Oeurng, C., Rubin, Z., Wild, T., 2018. 湄公河沉积物预算的变化:大型河流流域的累积威胁和管理策略。环境科学总论 625, 114 – 134 。Kummu, M., Lu, XX, Wang, JJ, Varis, O., 2010.湄公河沿岸新兴水库的全流域泥沙截留效率。地貌学 119,181 – 197 。 Lauri, H.,De Moel, H.,Ward, PJ,R ¨ as ¨ anen, TA,Keskinen, M.,Kummu, M.,2012。湄公河水文未来变化:气候变化和水库运行对流量的影响。水文地球系统科学 16,4603 – 4619 。 Li, D.,Long, D.,Zhao, J.,Lu, H.,Hong, Y.,2017。湄公河流域观测到的流动状态变化。水文杂志 551,217 – 232 。 Lu, XX,Siew, RY,2006。过去几十年来湄公河下游的水流量和泥沙通量变化:中国大坝的可能影响。 Hydrol. Earth Syst. Sci. 10, 181 – 195 。 Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流变化观测结果:中国水坝的影响? Quat. Int. 336, 145 – 157 。 Mai, NP, Kantoush, S., Sumi, T., Thang, TD, Trung, LV, Binh, DV, 2018. 评估和适应水坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378 。 Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。
1)MTM的FJH技术是回收金属的更好方法。常规金属回收是昂贵的,耗时的,能量密集的,取决于大部分的试剂被添加到该过程中,并且可能不会区分感兴趣的金属和其他金属。某些商品,尤其是锂和Rees,都有其自身对传统方法的脆弱性。,但FJH克服了所有这些,因为它很快,需要少得多的能量,并且可以确保仅回收有价值的金属。2)FJH已被证明是有效的。重复测试不仅表明MTM的FJH有效,而且由于过去几年的发展工作而变得越来越多。在2024年中期进行的测试表明,FJH对REE和关键金属的回收率比两年前高出50%。最新的REES测试实现了REES向氯化物的平均转化率93%,关键杂质降低了95%。3)FJH有很大的市场机会,预计未来几年将继续增长。金属回收将变得越来越重要,因为发现关键金属的新沉积物的成本随着运营地雷的不断增加而将其带入生产,但在某些司法管辖区(最著名的是欧盟)的法规授权将回收利用作为关键金属供应链的一部分。fjh将确保回收过程不仅可以加速,而且可以更有效(在产生更高的金属产量)和成本较低。4)2025将是一年的可靠新闻流。5)FJH有很大的上涨空间可以实现。该公司的下一个主要里程碑是FJH示范工厂设计的完成,预计将于2月,然后是采购,建筑和调试阶段。其他潜在的新闻流将包括正在进行的测试,商业合作伙伴关系和资金。,尽管该公司由于与Indium的合作和最新的FJH测试结果而在过去三个月中重新评估,但该公司及其技术仍处于早期阶段。我们看到了进一步重新评估的范围,如果它可以达到2025年设定的里程碑,尤其是设计以及随后的施工和试点规模工厂的开始和开始。进一步的商业交易和测试结果可能是进一步的催化剂。随着公司以前的估值增加了一倍,我们将其更新为2.607亿美元或每股0.57美元。
摘要。气候强迫数据准确性推动了水文模型和分析的性能,但是每个研究者都需要在众多网格气候数据集选项中进行选择,并证明其选择在特定的水文模型或分析中使用。本研究旨在详细介绍网格数据集(降水,空气温度,湿度,风速,太阳辐射)的全面汇编和概述,并考虑了基于对先前研究的审查和合成的综述和合成,该研究标准是历史杂种式产品选择标准。此处概述的所有数据集至少涵盖了美国(CONUS),许多数据集在大陆或全球范围内。Gridded datasets built on ground-based observations (G; n = 20), satellite im- agery (S; n = 20), and/or reanalysis products (R; n = 23) are compiled and described, with focus on the characteristics that hydrologic investigators may find useful in discerning acceptable datasets (variables, coverage, resolution, accessi- bility, and latency).,我们根据29项最近的研究(过去10年)的详尽回顾,解释和综合,为数据集选择提供了最佳的科学恢复,这些研究(过去10年)比较了各种网格 - 气候数据集用于水文分析的性能。不存在网格气候数据的最佳来源,但是我们确定了可能有助于指导数据集选择的常见主题:
lprca的管辖权在伯威尔港(Port Burwell)和东部延伸到伊利湖(Lake Erie)海岸的Sweets Corner,并将北部延伸到布兰特(Brant)和牛津县。流域占地2,782平方公里,有大约102,000人的故乡。分水岭包括七个子水和水道组:Big Otter Creek,South Otter/Clear Creek,Big Creek,Dedrick/Young/Hay Creek,Lynn River/Black Creek,Nanticoke Creek,Nanticoke Creek和Sandusk/Stoney Creek。流域的特征是分水岭北部的平原和冰rain,西南和中部的诺福克沙平原以及东部地区的霍尔迪曼德·克莱平原。大多数洪水是由降雪事件发生的冬季/春雨引起的,尽管其他几个月中只发生了高流量事件。
英国水文局 (UKHO) 正在寻求任命一名承包商,提供水文数据和信息翻译服务;UKHO 管理和/或商业相关文件;以及电话和/或面对面口译服务。本合同为期 3 个日历年,可选择延长 1 年。
锂被列为缓解气候变化的“关键”或“过渡”矿物,是用于驱动电动汽车 (EV)、电网存储和便携式电子设备的锂离子电池的关键成分,此外还直接用于陶瓷、玻璃和其他产品(Grosjean 等人,2012 年;Gruber 等人,2011 年;Jaskula,2024 年;美国地质调查局,2022 年)。锂是元素金属中最轻的,在电池中阳极和阴极之间传输电荷方面起着重要作用(Sanderson,2023 年;Scheyder,2024 年;Turner,2023 年)。国际能源署 (International Energy Agency) 估计,到 2050 年,锂需求可能会增长 10 倍,这主要归因于电动汽车的快速普及,尽管这一前景可能取决于对从硬岩、盐水和粘土等多种来源开采锂的扩展假设,以及采用潜在替代品的假设,例如钠离子电池或钒流存储技术 (International Energy Agency, 2024, p. 127; Xu et al., 2020)。尽管锂对于通过电气化实现脱碳具有潜在重要性,但研究人员和倡导者对锂对社会和生态造成的不利影响表示了高度担忧,这集中在有关水的争论上 (Babidge 等人,2019 年;Blair 等人,2022 年;Blair、Balc azar 等人,2023 年;Bustos-Gallardo 等人,2021 年;Jerez 等人,2021 年;Kramarz 等人,2021 年;Pollon,2023 年;Sovacool,2021 年)。1 提取锂的方法有很多种,从传统的露天采矿和盐水蒸发到新型的直接锂提取 (DLE) 技术。这些提取方法被认为是锂生命周期中的上游步骤,它们给水和与水相关的社区带来了不同的负担和好处。锂的加工、制造、使用、处置或回收等下游方法对水的影响值得进一步研究(图 1)。本文介绍了锂和水在其生命周期中的初步情况。2 我们考虑上游和下游对水资源数量和质量的影响,包括枯竭和污染。我们采用受土著知识和科学以及综合流域管理批判性观点影响的跨学科“一水”方法,认为对锂生命周期的全面评估必须包括