人工智能驱动的模拟器的兴起:构建新的水晶球 计算社区联盟 (CCC) 四年期论文 Ian Foster(芝加哥大学)、David Parkes(哈佛大学)和 Stephan Zheng(Salesforce AI Research) 五十年前,天气预报员努力预测明天的天气是否与今天相同。如今,天气预报通常可以准确预测未来一周或更长时间,让个人和社会能够为不再不可预见的事情做好准备。这种显著的转变在很大程度上归功于计算机,尤其是计算模拟的兴起,这是一种使用计算机预测复杂系统未来状态的方法。模拟最初是在第二次世界大战的最后几天为军事目的而开发的,现在已遍布人类社会和经济领域,为决策者提供了一个非凡的水晶球,不仅可以预测下周的天气,还可以预测飞机在不同天气模式下飞行时的表现、新药对新疾病的有效性以及未来电池中新材料的行为。计算机模拟是在计算机上执行的数学建模过程,旨在预测现实世界或物理系统的行为或结果。 1 模拟通常通过将空间(例如北美)划分为多个小单元来配置,每个小单元保存一组值(例如温度和压力)以及一组本地规则,用于更新下一个时间步骤的单元(例如,基于单元和相邻单元的当前温度和压力,一分钟后的温度/压力)。模拟运行以测量的输入(温度/压力)为种子,并反复应用其规则来随时间更新模拟系统。更准确的输入数据、更小的单元和更好的规则可以实现更高保真度的模拟(例如,下周而不是明天的良好天气预报)。计算机模拟的使用现在在社会上如此普遍,毫不夸张地说,美国和国际的持续繁荣、安全和健康在一定程度上取决于模拟能力的持续改进。如果我们能够预测两周后的天气,指导新病毒性疾病新药的设计,或者管理将生产成本和时间降低一个数量级的新制造工艺,情况会怎样?如果我们能够预测人类的集体行为,例如,在自然灾害期间对疏散请求的响应,或劳动力对财政刺激的反应,情况会怎样? (另请参阅 CCC Quad 关于疫情信息学的配套论文,其中讨论了
生物系统利用分子识别的分子识别,这些分子以形状,大小,化学功能和电荷相互补充来完成许多生物学事件,例如细胞通信,酶活性和抗原抗体相互作用,以高效和特定的方式。受自然的启发,化学家设计并制备合成分子受体,以探索特异性,形状识别和结合位点互补性的概念,这是生物受体的典型特征。利用分子识别中合成受体的潜力需要在所研究的复合物方面的结构信息,以类型,数量和强度的相互作用的相互作用。近地面受体的概念,能够接受唐·克拉姆(Don Cram)在1983年提出的有机或无机客人的概念,这是通过第一个carcerand的合成而实现的,这是由于两个cavitands通过四个接头的共价连接而实现的。2通过链接器的不同类型和长度,可以调节内腔外侧门户的大小,形状和尺寸。carcerands被设计为包括有机分子的培养基,控制其反应性,动力学和稳定性。3两个值得一提的选定示例是驯服环丁二烯4和o -benzyne的稳定。5金属指导的自组装方法是通过在90年代初通过富士马的开拓性工作引入了化学界的。6,7这种方法向Cavitand场的转移产生了具有可逆性并克服共价途径的某些合成限制的协调笼。
大规模储能,消费电子设备和电动汽车的快速开发提出了对电化学能源存储设备的能量密度的高度要求,这使高特异性能电池成为当前的研究热点。在大规模储能中,具有高能量密度的可再生能源的输出对于支持智能电网的开发至关重要。运输部门,尤其是电动汽车行业,严重依赖高特异性电池来扩大行驶范围,减少充电时间并提高整体车辆效率。同时,在消费电子中,对具有较长循环寿命和尺寸较小的电池的需求正在推动电池技术的持续开发。本期特刊旨在作为一个平台,以从世界各地收集尖端研究并促进高特异性电池的创新开发。通过促进学术交流与合作,我们希望加快在高能量电池中的技术突破,并将研究结果转化为各个行业的实际应用。
本期特刊旨在收集纳米结构晶体半导体领域的最新进展,用于能量转换,化学和物理感测,光电和电催化以及生物医学应用。将特别关注的是贡献,重点是晶体结构和纳米级形态在功能特性上的作用,以及结构 - 培训关系的建模预测以及无原始合成技术的发展。We invite the submission of papers on the following topics, including but not limited to: inorganic nanostructured binary and ternary semiconductors, e.g., metal oxides and chalcogenides, silicon and germanium nanocrystals, 2D semiconductors, nanoscale homo- and heterojunctions, doped semiconducting nanomaterials, Perovskite纳米结构和量子点。此外,预计特刊将强调最近在具有半导体特性和混合无机 - 有机有机物半导体的有机晶体纳米结构的挑战和新颖的应用。
金属间化合物是一类特殊的金属材料,其特性使其可以在传统金属材料失效的条件下使用;这些条件包括高温、腐蚀性环境以及极端的磨蚀和粘合应力。许多金属间化合物表现出非常好的物理和机械性能,特别是非常好的热稳定性、高熔点、良好的耐腐蚀性和低密度,这使它们成为高温应用的合适候选材料。然而,这些材料的延展性有限,脆性较高,尤其是在低温下,这阻碍了它们的广泛应用。基于中间化合物的材料的用途非常广泛,但始终有必要从物理或机械性能的角度考虑特定材料的选择。它们被用作建筑材料、形状记忆材料(NiTi)、电阻炉加热元件(MoSi2)、磁性合金(Ni3Fe)、储氢材料(Mg2Ni、LaNi5)或高温材料(TiAl、NiAl),或用于强氧化环境(FeAl)。