I. 简介 许多研究人员已经基于多孔弹性构建了脑积水的计算理论。此类模型将有助于更好地理解问题,从而提供更好的治疗方法。此类模型还忽略了分流术的间歇性影响,而分流术是治疗脑积水最常用的方法。我们使用弹性和流体力学来创建人脑和脑室系统的数学模型。我们的模型通过考虑跨导水管的流动并包括边界约束来扩展以前的工作。这将为疾病的边界和改善创建一个定量模型。我们开发并解决了该模型的控制方程和边界条件以及有意义的临床发现。我们的模型通过将导水管流与边界约束结合起来,扩展了早期对脑积水的研究。脑脊液沿着脊髓周围的蛛网膜下腔向下流动,然后进入颅脑蛛网膜下腔,然而,物理定律很难解释这种流动是如何持续的。采用体内刺激的数学方法来研究脉动血液、脑和脑脊液的动态相互作用 1 。本文介绍的模拟是为患有脑脊液生理病理疾病脑积水的个体生成的 2 。研究特发性脑积水化学浓度不对称循环的后脑室通透性 3 。使用基本的几何模型,当前的研究提出了一种全新的脑积水多物理扩散过程方法,并作为更复杂的几何模拟的标准 4 。研究了脑脊液在心血管和蛛网膜下腔的循环以及脑脊液渗入多孔脑实质的问题。开发了复杂大脑几何形状的边界条件 5 。将标准受试者的研究信息与代表颅内动力学的实际计算模型进行了比较。该模型利用特定于受试者的磁共振 (MR) 图像和物理边界条件作为输入,可重现脉动的脑脊液循环并模拟颅内压力和流速 6 。该数值模型用于探索横截面几何形状和脊髓运动如何影响非稳定速度、剪应力和压力梯度场 7 。该系统分为五个子模型:动脉系统血液、静脉系统血液、心室脑脊液、颅内蛛网膜下腔和脊髓出血腔。阻力和顺应性将这些子模型连接起来。构建的模型用于模拟七个健康个体中发现的关键功能特征,例如动脉、静脉和脑脊液流量分布(幅度和相移) 8 。此前,利用时间分辨三维磁共振速度映射研究人体血管系统中健康和异常的血流模式。利用这种方法研究了 40 名健康志愿者 9 的脑室系统中脑脊液流量的时间和空间变化。这些颗粒中的脑脊液和血液之间的屏障很小,使脑脊液能够流入循环并被吸收。与脑脊液的产生相反,消耗是压力-
urbain nzotcha。促进喀麦隆可持续发电的抽水水电存储:对当地机会的评估。工程科学[物理学]。deyaoundé大学,ecole nationalesupérieurepolytechnique deyaoundé,2020年。英语。nnt:。电话03117844
urbain nzotcha。促进喀麦隆可持续发电的抽水水电存储:对当地机会的评估。工程科学[物理学]。deyaoundé大学,ecole nationalesupérieurepolytechnique deyaoundé,2020年。英语。nnt:。电话03117844
Sivarama Krishna Reddy Chidepudi,Nicolas Massei,Abderrahim Jardani,Abel Henriot,Delphine Allier等。总环境科学,2023,865,第161035页。10.1016/j.scitotenv.2022.161035。hal-03925440
摘要:营养出口分析是一个可靠的参数,可帮助酸味的百香果生产者推荐施肥和对植物的替代营养。在可以减少营养成果的因素中,低品质的遗传物质,向植物供应不足以及用盐水灌溉的因素是最有限的。这项研究的目的是通过收获中等盐水灌溉的酸性百香果品种的果实来评估土壤中液体牛肥料生物肥料对养分出口的影响。The experiment was conducted in Nova Floresta, Paraíba, Brazil, in a randomized block design and in a 3 × 5 factorial scheme, with three replicates and three plants per plot, referring to three cultivars (‘Guinezinho', ‘BRS SC1', and ‘BRS GA1') and five concentrations of biofertilizer (0, 10, 20, 30, and 40%), applied monthly in a constant volume of 5 L每植物,水为1.2 ds m -1。应以40%的浓度施用液体牛粪生物肥料,因为它可以促进磷,钾和铜的出口增加。“ Guinezinho”和“ Brs Ga1”是酸味的百香品种,其果实的养分出口量最高。氮和铜分别是以下出口顺序出口的酸味水果果实的最多和最少的元素:[n> k> ca> mg> mg> p]> [fe> zn> mn> mn> cu]。
lprca的管辖权在伯威尔港(Port Burwell)和东部延伸到伊利湖(Lake Erie)海岸的Sweets Corner,并将北部延伸到布兰特(Brant)和牛津县。流域占地2,782平方公里,有大约102,000人的故乡。分水岭包括七个子水和水道组:Big Otter Creek,South Otter/Clear Creek,Big Creek,Dedrick/Young/Hay Creek,Lynn River/Black Creek,Nanticoke Creek,Nanticoke Creek和Sandusk/Stoney Creek。流域的特征是分水岭北部的平原和冰rain,西南和中部的诺福克沙平原以及东部地区的霍尔迪曼德·克莱平原。大多数洪水是由降雪事件发生的冬季/春雨引起的,尽管其他几个月中只发生了高流量事件。
信息 本公报中记录的每月平均水位是从每个湖泊的代表性水位计网络测得的结果。这些数据的提供者是美国商务部、国家海洋和大气管理局、国家海洋局和加拿大渔业和海洋部综合科学数据管理部门。底特律地区、工程兵团和加拿大环境与气候变化部在五大湖基本水力和水文数据协调委员会的支持下,得出历史和预测湖泊水位。工程兵团每月发布公报,作为一项公共服务。工程兵团还每周在线发布五大湖、连接水道和圣劳伦斯河的水位和深度,提供五大湖和圣劳伦斯河国际段之间连接河流的深度预报。这份五大湖水位月报以彩色格式可在互联网上获取,网址为 https://www.lrd.usace.army.mil/Water-Information/Water-Management/Great-Lakes-and-Harbors/Water-Level-Forecasts/。如有疑问,请发送电子邮件至 hhpm@usace.army.mil 或致电 1-888-694-8313 并选择选项 1。五大湖流域水文 2024 年 11 月初步估计表明,11 月份苏必利尔湖和密歇根湖-休伦湖的降水量高于平均水平,伊利湖和安大略湖的降水量低于平均水平。安大略湖流域的降水量与历史平均水平相比最低,为 82%。苏必利尔湖的降水量占平均水平的比例最大,为 115%。在过去 12 个月中,除安大略湖外,每个湖盆的总降水量都低于长期平均水平,而安大略湖为平均水平的 107%。暂时来看,除苏必利尔湖外,所有湖泊的水量都远低于平均水平。11 月,密歇根湖-休伦湖和伊利湖通过各自连接水道的流出量高于平均水平,苏必利尔湖和安大略湖则低于平均水平。10 月至 11 月,所有湖泊的月平均水位下降了约 2 至 7 英寸。密歇根湖-休伦湖的平均水位连续第二个月低于长期平均水平。所有湖泊从 10 月到 11 月都继续出现季节性下降,最新的五大湖水位 6 个月预测预测,这些湖泊将在未来一个月继续下降。
近年来,淡水和盐水水生食品行业经历了最显着的增长,并越来越被认为是促进繁荣的社会自我绩效和生态上的可持续替代方案。水产养殖生产中的一个主要经济和健康危险因素是健康控制,在热带和发展中国家中可能会发现更严重的影响。虽然宏基因组学对在水产养殖等农业工业领域的应用有很大的希望,但其采用仍然有限。因此,本研究旨在评估开发和应用宏基因组学在识别淡水水产养殖中病原体时的前景。WIPO数据库用于搜索使用宏基因组学开发的专利,以监测淡水水产养殖中的病原体。宏基因组方法已广泛用于不同的领域,例如医学,兽医,生物技术,农业,特别是在重点是不同生态系统中的微生物群落的研究中。在水产养殖中,宏基因组学的利用主要围绕研究抗生素耐药性基因,主要是在盐水农场中。尽管如此,淡水水产养殖,尤其是在鱼类和甲壳类动物中,与可持续发展目标密切相符,尤其是(SDGS)2、3、6和13。国家,例如美利坚合众国,韩国和加拿大,在利用元基因组学对淡水水产养殖的疾病监测的最前沿,其积极的专利发展证明了这一点。与生物信息学工具和数据库相结合的宏基因组分析代表了用于预防目的的环境监测的快速,安全且无创的方法。