人为错误 一艘正在进行 DP 试验的船只在水深约 1000 米处以 SBL 模式操作 LBL/SBL 声学定位系统。系统可以选择三个 VRU 中的一个来补偿声学测量横摇和纵摇。有一个四位置手动开关,每个 VRU 都有一个位置和一个关闭位置。作为测试的一部分,将选择 VRU #3。开关标签很差,实际开关位置和关闭位置之间存在视差——错误选择了关闭位置。这个错误导致位置明显发生较大偏移,DP 控制系统会施加大量推力进行追踪。这个错误导致船只严重倾斜,因为现在没有 VRU 补偿
联合机载激光雷达测深技术专业中心 (JALBTCX) 因其在机载沿海测绘和制图方面的领导地位以及通过其年度技术研讨会创建实践社区而受到认可,这直接促成了本书的写作。JALBTCX 是美国海军气象和海洋学司令部海军海洋学办公室、美国国家海洋和大气管理局、美国地质调查局和美国陆军工程兵团之间的合作伙伴关系。通过 20 场年度研讨会(迄今为止!),国家和国际政府代表、学者、激光雷达制造商和激光雷达测量公司有一个论坛来相互交流,发展地形/水深激光雷达和辅助技术,并发展全球机载沿海测绘和制图市场。只有通过 JALBTCX 合作和社区,才能实现这一全球知识汇编。
•船只相互作用对海洋哺乳动物,海洋爬行动物和鱼类,鲨鱼和射线构成了潜在威胁。•虽然一部分操作区域重叠了侏儒蓝鲸和座头鲸迁移偏见,但这种重叠代表了BIA的一小部分。鉴于项目容器通常运行的慢速速度,与鲸鱼的相互作用不太可能。•鲸鲨在运营区的存在可能是在迁移到Ningaloo礁期间的。只有在短时间内才能在该地区进行鲸鱼鲨鱼,它们的存在将是迁移的。•操作区域与敏感乌龟区域的偏差重叠,但是鉴于水深和缺乏筑巢的潜力,海龟很可能仅将该区域不经常用于过境。•船只活动不太可能导致对动物区系的短期破坏,而对关键栖息地没有预期的影响。
漂浮的海上风能允许海上风能系统部署在与常规固定底技术无法接近的水深中,其中已经安装了60 gW。几个浮动的海上风能飞行员项目已经证明了该技术在200 m至300 m之间的水深度运行。在这一经验的基础上,商业规模的项目正在以1300 m的深度开发。在某些地区,在更深的水域中,风能发电具有巨大的资源潜力。但是,增加深度可能会引入新的挑战,以实现安装,维护和维修。在本报告中,我们考虑了在超过的水中漂浮在海上风能中的技术,环境和经济挑战,此处定义为1,300 m至3,000 m之间的深度。
■ 规划必须描绘平均低水位 (MLW) 时的现有水深。■ 规划必须确定低于平均低水位的项目深度(以英尺为单位)。■ 注释部分必须说明进行水文调查的日期和时间 – 该日期和时间必须在 SSAP 提交日期后的 6 个月内。■ 必须划出拟议的疏浚区域。清楚地确定维护和/或新疏浚的区域■ 确定项目现场 500 英尺范围内的船舶加油站的位置。■ 确定项目现场 500 英尺范围内所有排水口或进水口的位置。■ 确定项目现场内和附近的所有水中结构。■ 除非您请求部门确定样本位置(请参阅第 5 页),否则拟议的样本位置必须叠加在水文调查上。■ 有关更多详细信息,请参阅附录 G,第 III-A-2 章。
自 S-44 第 4 版 (IHO, 1998) 发布以来,在数据收集和处理过程中对深度测量不确定性进行建模已成为一种常见做法。水文办公室也试图对传统水深测量的不确定性进行建模,以确定其是否适用于各种用途。可以通过各种网格化技术将额外的不确定性引入代表性水深测量模型中,这些技术在测量之间插入深度。本文回顾了测量不确定性的来源,研究了估计传统数据集中不确定性的方法以及通过网格化引入水深测量 (数字高程/深度) 模型 (DEM/DDM) 的不确定性。可以从水深测量/DEM/DDM 不确定性信息中受益的应用包括桥梁风险管理和海啸淹没建模。关键词:水深测量、不确定性、数字高程模型
根据米尔斯州长的指示,缅因州交通部 (MaineDOT) 聘请了 Moffatt & Nichol (M&N) 公司研究在西尔斯波特地区建设港口设施以支持东海岸海上风电 (OSW) 产业的可行性。目前,美国东海岸的 42 MW 装机容量、9 GW 的 OSW 发电量以及所有未来拟建的商业规模项目均完全由固定底部基础(单桩和导管架)支撑的涡轮机组成(见图 1-1 和图 1-2)。固定底部基础通常用于 200 英尺(+/- 60 米)或更浅的水域,由于大陆架宽而浅,因此在美国东海岸沿线效果很好。但是,在超过 200 英尺的水深下,安装这种类型的基础变得不经济且效率低下。
图 2-8 蒂拉穆克湾 (Tillamook Bay) 的历史水深表面....................................................... 2-32 图 2-9 1996 年洪水的航拍照片.............................................................................. 2-38 图 4-1 调查水生栖息地的溪流......................................................................................... 4-4 图 4-2 ODFW 核心区域和 AFS 水生多样性区域....................................................... 4-5 图 4-3 大型木材招募潜力.................................................................................... 4-6 图 4-4 健康与不健康的河岸状况.................................................................................... 4-18 图 4-5 砾石质量和可用性.................................................................................... 4-22 图 4-6 大型木材.................................................................................................... 4-23 图 4-7 水池面积和频率............................................................................................. 4-24 图 4-8 湿地............................................................................................................. 4-30 图 4-9 流量恢复潜力................................................................................ 4-42 图 4-10 潮汐闸门改造潜力,改善栖息地和水质.................................... 4-58 图 4-11 河口分区图........................................................................................ 4-62 图 6-1 潜在的河道内栖息地改善地点............................
过去六年来,由杰出科学家组成的独立科学小组与研究人员、监管和资源机构以及采砂行业代表通力合作,对旧金山湾鲜为人知的沙土系统以及中央湾和苏伊森湾采砂对其影响进行了研究、分析,并获得了新的科学信息。随附的报告“旧金山湾沙土预算、运输、来源和水深变化研究以及采砂活动的潜在物理影响”提供了这项研究的成果。主要发现包括但不限于:沙土开采速度快于补充速度;沙土是一种有限的资源;萨克拉门托河和圣华金河的沙土不再是旧金山湾的重要沙土来源;旧金山湾的沙土已成为残余;中央湾和太平洋共享一个沙池。