已有多项研究涉及活性炭的功能化,通过在适当的氧化状态下嫁接不同的表面基团来实现所需的性能。25 – 27 在改变活性炭性能的方法中,用杂原子(如氧、氮、硼、硫和磷)掺杂碳基质是调整电子结构和改善表面性能的最有效方法。氧官能团通常存在于碳表面,必须考虑它们对电容性能的影响,因为它们参与法拉第相互作用,从而显著增加酸性水系超级电容器中碳的比电容。N 的孤对电子与碳材料石墨 p 键的共轭会进一步扭曲碳结构,从而产生缺陷和可用的活性位点,这已经得到了广泛而深入的研究。然而,磷掺杂碳材料骨架中磷配置的作用机理仍不清楚。28 – 36
热液工艺能够有效地将废弃生物质转化为燃料和碳质材料。用聚光太阳能满足热量需求是提高工厂效率和推行循环经济原则的明智策略。为了通过零能耗途径生产液体和固体生物燃料,这项工作提出了两种概念设计,用于将聚光太阳能系统 (CSS) 与热液液化 (HTL) 和热液碳化 (HTC) 工厂相结合。用于满足热液热量需求的太阳能配置由一组使用熔盐运行的抛物线槽式集热器组成,熔盐既用作热载体流体,又用作热能存储介质。模拟了两种不同的场景来连续处理木材和有机废物。在第一种情况下,CSS 与连续 HTL 反应器(在 400°C 和 300 bar 下运行)相结合,然后进行热裂解和加氢处理,以将生物原油升级为可销售的液体生物燃料。第二种方案考虑使用连续 HTC 反应器(工作温度为 220 °C 和压力为 24 bar)运行的 CSS,将有机废物转化为固体燃料(水热炭)。CSS 和两个热液工厂都是基于实验数据建模的。研究了能源消耗和技术经济方面。
摘要:本文报道了通过简便的水热法成功合成钴钌硫化物。使用 X 射线衍射、X 射线光电子能谱和拉曼光谱对所制备的钴钌硫化物的结构进行了表征。所有制备的材料均呈现纳米晶体形态。通过循环伏安法 (CV)、恒电流充放电 (GCD) 和电化学阻抗谱技术研究了三元金属硫化物的电化学性能。值得注意的是,优化后的三元金属硫化物电极表现出良好的比电容,在 5 mV s -1 时为 95 F g -1,在 1 A g -1 时为 75 F g -1,优异的倍率性能(在 5 A g -1 时为 48 F g -1)和优异的循环稳定性(1000 次循环后电容保持率为 81%)。此外,该电极在功率密度为 600 和 3001.5 W kg -1 时的能量密度分别为 10.5 和 6.7 Wh kg -1。这些诱人的特性使所提出的电极在高性能储能装置中具有巨大的潜力。
水热加工对合成晚期纳米材料以及具有量身定制特性的复合材料引起了极大的兴趣。该技术已用于为包括电子和光电设备,催化,生物医学,生物素器等的广泛应用生产纳米结构材料。“水热”一词起源于地质学,英国地质学家罗德里克·默奇森爵士(Roderick Murchison)是第一个使用它的人。他将地壳和随后形成的岩石以及矿物质的变化归因于在非常高的温度和压力下水的热液作用。顺便说一句,最大的自然存在的单晶(绿晶晶体,超过1kg),以及最大的人造单晶(几公斤的石英晶体),都是通过热液过程[1-2]来源的。
热泵将室外空气中的低温热量转化为高温热量。为了实现这一点,风扇吸入空气,并将其引导至蒸发器 (1)。蒸发器包含液体传热介质。它在低温低压下沸腾并蒸发。从空气中提取所需的蒸发热,在此过程中空气会冷却下来。然后将空气释放回大气中。蒸发的传热介质由压缩机 (2) 吸入并压缩至更高的压力。压缩后的气态传热介质被推入冷凝器 (3),在那里它在高压高温下冷凝。冷凝热被传递给加热水,导致水温升高。传输到加热水的能量相当于先前从室外空气中提取的能量,加上压缩所需的少量电能。冷凝器和膨胀阀 (4) 上游的压力很高。通过膨胀阀,发生温度敏感的压力降低,导致压力和温度下降。然后循环再次开始。
第三纪熔岩流动和脉络水沉积物在马尔帕斯倾斜坡上散发出来。这种麦尔波去射坡度是一个较旧的正常断层系统,即邓菲通断层区,具有西北趋势。该渐新世至中新世断层区形成了西北主要的抓地力的Thie Easters边缘,这是750公里长的线性空气磁性和结构特征的南部延伸的一部分,称为俄勒冈州内华达州的谱系(Stewart等人,Stewart等,1975年)。Graben中的第三纪火山截面约为1,400 m; Dunphy Pass断层区的东部仅100 m厚。基础的奥陶纪瓦尔米形成是一个严重破裂的硅质eugeosynclinal沉积物,该沉积物是罗伯茨山脉推力板的一部分。碳质粉砂岩,cher和石英岩的瓦尔米地层沿着Dunphy Pass断层区以东的Malpais边缘散发出来,并由Whirlwind Valley的深层地热测试井遇到。第三级糖尿病碱基堤防被侵入瓦尔米和火山岩石被认为是与俄勒冈州内华达谱系相关的明显空气磁异常的来源,以及填充graben的第三纪火山序列的饲养者(Robinson,1970年)。
