水稻条纹病是一种由昆虫传播的病毒性疾病,不仅在日本,而且在东亚地区都造成了严重的损失。由于含有抗性基因的品种有助于控制这种疾病,因此需要快速识别抗性基因的技术。以往的生物测定方法不仅需要准确判断有无抗性的技术,还需要饲养带病毒昆虫和栽培试验植物的设备,因此近年来利用水稻条纹病抗性DNA标记选育抗性个体的育种已成为主流。鉴于此情况,从2023年起,水稻品种登记审查也将采用DNA标记进行特性评估。这里就分别介绍这两种情况下所使用的水稻条纹病抗性DNA标记。
TBR225 是越南北部最受欢迎的商业水稻品种之一。然而,该品种极易感染细菌性叶枯病 (BLB),这是一种由水稻白叶枯病 (Xoo) 引起的疾病,会导致严重的产量损失。OsSWEET14 属于编码糖转运蛋白的 SWEET 基因家族。与其他 Clade III 成员一起,它表现为易感性 (S) 基因,该基因由亚洲 Xoo 转录激活因子样效应物 (TALE) 诱导对于疾病是绝对必要的。在本研究中,我们试图在 TBR225 优良品种中引入 BLB 抗性。首先,两种越南 Xoo 菌株被证明在 TBR225 感染后会上调 OsSWEET14。为了研究这种诱导是否与疾病易感性有关,利用 CRISPR/Cas9 编辑系统获得了九个 TBR225 突变体系,这些突变发生在 OsS-WEET14 启动子的 AvrXa7、PthXo3 或 TalF TALEs DNA 靶序列中。T 0 和 T 1 个体的基因分型分析表明,突变是稳定遗传的。三个无转基因 T2 编辑系的所检查农艺性状与野生型 TBR225 的性状均无显著差异。重要的是,其中一个 T 2 系含有最大的纯合 6 bp 缺失,显示 OsSWEET14 表达降低,对越南 Xoo 菌株的易感性显著降低,对另一个菌株完全抗性。我们的研究结果表明,CRISPR/Cas9 编辑赋予了越南商业精英水稻品种更高的 BLB 抗性。
从泰国 Roi Et 省雨养有机稻田土壤样本中分离出一株革兰氏阳性菌,命名为菌株 ORF15-23。据报道,该菌株能产生吲哚-3-乙酸和 2-乙酰基-1-吡咯烷 (2AP) 化合物,溶解钾长石并促进水稻幼苗生长。基因组测序采用 Illumina MiSeq 平台进行。菌株 ORF15-23 的基因组草图长度为 2,562,005 bp,包含 1677 个蛋白质编码序列,平均 G + C 含量为 72.97 mol.%。系统基因组树支持将菌株 ORF15-23 归为微球菌属的成员。平均核苷酸同一性 (ANIb) 值比较显示,菌株 ORF15-23 与 M. yunnanensis DSM 21948 T 基因组的同一性为 96.95 %。M. yunnanesis ORF15-23 的基因组草图序列已存入 DDBJ/EMBL/GenBank 数据库,登录号为 JAZDRZ0 0 0 0 0 0 0 0 0。该基因组序列数据为分类学研究提供了有价值的信息
本财年的强季风降雨给尼泊尔带来了死亡和破坏,但也带来了一些好消息。农业部周五宣布,尼泊尔农民预计本财年水稻收成将创历史新高。由于“高于正常水平的降雨”支持了水稻产量提高,尼泊尔的水稻移栽速度是几十年来最快的国家之一。马德西省长期以来一直存在降雨不足的问题,但该省获得两位数的收成,推动了全国水稻产量的提高。农业和畜牧业发展部的初步估计,本财年水稻产量同比可能增长约 4.04%,达到 595 万吨的新纪录。“这是有记录以来的最高水稻产量,”该部发言人马蒂娜·乔希·瓦伊迪亚说。水稻产量的增长可能会给开伯尔-普赫图赫瓦省夏尔马·奥利领导的政府带来一些喘息之机。该国经济正在努力应对产量低的问题,这导致进口增加。根据政府的最低支持价格,稻谷总价值(不包括稻草和稻壳等副产品)为 2132 亿卢比。尼泊尔大部分地区的稻谷在 6 月移栽,10 月至 11 月收获。
Nipponbare是一种Japonica水稻品种,已被广泛用作水稻的标准参考基因型[1]。大米(Nipponbare)基因组是20多年前测序的最早测序的作物基因组之一[2]。大米基因组的第1个序列于2002年完成,是国际水稻基因组测序项目,2005年的植物基因组学领域的主要英里石[3]。这些国际合作努力提供了作物工厂的第一个基因组。Nipponbare基因组组装含有间隙,主要是由于重复的DNA序列。在2005年,这些差距总共约为18.1 MB,大部分来自centromeres和端粒区域。对技术进步和正在进行的研究工作的测序,随着时间的推移改善了水稻基因组序列[4,5]。thor的努力,以提高2013年的裸露参考基因组组件的质量,从而大大提高了cDNA序列和基因注释的精度,而它仍然不完整[5]。在人类基因组中,在组装和特征化方面已取得了最新的迈进,先前未开发的8%的人类基因组,尤其是包括端粒序列[6]。
稻米在菲律宾人的生活中扮演多方面的角色,包括营养,经济,文化和社会层面。菲律宾有许多障碍要克服,以维持水稻行业的粮食安全和可持续性。在水稻供应链中有明显的收获后损失,如60%至65%的稻米转化率向铣削米饭所见。收获后的损失发生在收获与人类消费时刻之间。它们包括农场损失,例如粒状阈值,绞滴和干燥以及在运输,存储和加工过程中沿链条的损失。后期手术损失或浪费了大约三分之一的水稻。大米的储存损失在后票的损失中起着至关重要的作用。安全的粮食储存系统在确保粮食安全方面起着至关重要的作用,尤其是对于完全依赖耕种的人们而言。减少大米的后损失可能是增加粮食供应,减轻自然资源的压力,消除饥饿并增强农民的生计的一种可持续方式,尤其是在发展中国家。它的重要性超出了全国各地的饮食习惯,生计和社交互动的范围。鉴于其作为主食食品的地位,确保稳定且足够的大米供应对于菲律宾的粮食安全至关重要。米粒是通过季节性生产的,但它们的消费量是恒定的。因此,必须存储大米。基础架构差和缺乏获得现代存储技术的访问促成了这一问题。稻米生产或分配中的任何中断都会对人口的福祉产生重大影响。国际水稻研究所(IRRI)培训手册提到,菲律宾从帕迪(Palay)到米饭的转化率仅为60%(60%)。收获后的OSSE可以在水稻供应链沿着各个阶段发生,从而降低效率和经济损失。收获后的处理和存储设施不足可能会导致大米造成的大米损失,因为变质,害虫和霉菌。应对这些挑战需要一种全面的方法,涉及利益相关者之间的合作,基础设施和技术的投资,采用可持续的环保最佳实践,用于收获后管理,实施质量控制措施,促进透明度和整个供应链中的透明度和信息共享。此外,建立对环境和气候风险的韧性的策略对于确保水稻供应链的长期可持续性至关重要。在任何供应链中都不可避免地浪费和破坏。随着时间的流逝,处理,污染和恶化等因素可能会导致损失,尤其是如果无法正确管理和缓解,则可能导致损失。在菲律宾实现粮食安全和大米的可持续性,需要采用多方面的方法来应对整个水稻供应链的各种挑战。升级收获后的基础设施,包括存储设施,干燥设施和加工厂,以减少损失并保持谷物质量。鼓励收养为农民提供适当的收获后处理技术的培训和支持,以最大程度地减少变质和浪费。
传统上,水稻种植严重依赖于针对特定性状而定制的单一品种,但这些方法在恢复力和稳定性方面表现出局限性。采用品种混合(VarMix)使我们能够利用遗传多样性,从而提高产量稳定性,加强病虫害管理,优化资源效率,最终促进更可持续、更具恢复力的水稻生产系统。本研究使用加性主效应和乘性相互作用(AMMI)方法,结合方差和主成分分析(PCA),研究了 12 个不同环境中 12 个水稻品种混合物和单一品种的表现。分析表明,环境因素是遗传变异的主要驱动因素,对水稻产量动态有重大贡献。值得注意的是,NSIC Rc298 (A)、NSIC Rc298: NSIC Rc214: NSIC Rc216 (ABC) 和 NSIC Rc214: PSB Rc82: NSIC Rc238 等基因型
现象预测(PP)是一种利用近红外光谱(NIRS)数据的新方法,为育种应用提供了基因组预测(GP)的替代方法。在PP中,高光谱关系矩阵取代了基因组关系矩阵,可能会导致添加剂和非加性遗传效应。与GP相比,PP具有成本和吞吐量的优势,但影响其准确性的因素尚不清楚,需要定义。本研究研究了各种因素的影响,即训练人群的规模,多种环境信息整合以及基因型X环境(GXE)效应对PP的影响与GP相比。我们评估了在四种不同环境中种植的水稻多样性面板中的几种农艺上重要特征(开花,植物高度,收获指数,千粒体重和谷物氮含量)的预测准确性。培训人群规模和GXE效应包容对PP准确性的影响最小。影响PP准确性的关键因素是包括的环境数量。使用来自单个环境的数据,GP通常超出执行的PP。但是,使用来自多个环境的数据,使用基因型随机效应和每个环境的关系矩阵,PP获得了与GP的可比精度。与使用单个信息源相比,将PP和GP信息组合在一起(例如,GP,PP的平均预测能力以及GP和合并的GP和PP的平均预测能力分别为0.44、0.42和0.44)。我们的发现表明,当所有基因型至少具有一个NIRS测量值时,PP可以与GP一样准确,这可能为水稻育种计划提供重要优势,降低育种周期并降低计划成本。
盐分是限制沿海滩涂土地利用的首要因素,根际微生物在增强作物抗逆性方面发挥着至关重要的作用,对环境变化高度敏感。水稻(Oryza sativa L.)是盐渍土改良的首选作物。本研究通过高通量测序技术,对不同盐胁迫处理下水稻根际土壤微生物群落进行了研究。研究发现,盐胁迫改变了水稻根际土壤细菌群落多样性、结构和功能。盐胁迫显著降低了水稻根际土壤细菌群落的丰富度和多样性。盐胁迫下,细菌群落中绿弯菌门、变形菌门和放线菌门丰度较高,厚壁菌门、酸杆菌门和粘球菌门相对丰度降低,拟杆菌门和蓝藻门相对丰度增加。水稻根际土壤细菌群落功能主要有化学异养、好氧_化学异养、光能营养等,其中化学异养和好氧_化学异养NS3(基土中添加3‰NaCl溶液)处理显著高于NS6(基土中添加6‰NaCl溶液)处理。本研究为开发水稻专用耐盐微生物菌剂提供了理论基础,为利用有益微生物改善滨海盐渍土土壤环境提供了可行的策略。