DOI:10.1002/((请添加稿件编号)) 文章类型:综述 改善水系多价金属离子电池层状结构正极的策略 吴晨,谭辉腾,黄文静,刘春泰,魏伟峰,陈利宝*,闫庆宇* 吴晨,中南大学粉末冶金国家重点实验室,长沙 410083,中国。 南洋理工大学材料科学与工程学院,新加坡 639798,新加坡。 谭辉腾博士、黄文静博士,南洋理工大学材料科学与工程学院,新加坡 639798,新加坡。 刘春泰 郑州大学材料加工与模具教育部重点实验室,郑州 450002,中国。 魏伟峰教授、陈利宝教授,中南大学粉末冶金国家重点实验室,长沙 410083,中国。电子邮件:lbchen@csu.edu.cn 严庆宇教授,南洋理工大学材料科学与工程学院,新加坡 639798,新加坡。电子邮件:alexyan@ntu.edu.sg 关键词:多价金属离子电池、形态工程、结构工程、电解质工程 亮点
电动汽车 (EV) 的双能量存储系统 (DESS) 的重点一直是降低成本和提高性能。虽然这些对于开发更好的系统很重要,但不应忽视系统和组件级选择对环境的影响。当前人们对电动汽车的兴趣主要是出于环境原因,例如减缓气候变化和减少化石燃料的使用,因此在设计阶段开发环保替代品非常重要。评估发展中和成熟的化学反应对环境的影响可以为现在需要选择的技术以及未来需要开发的技术提供宝贵的见解。本文介绍了从摇篮到大门(即考虑所有原材料和生产要素;但是,“使用”阶段和回收不在考虑范围内)的生命周期评估,评估了带有锂离子和水性铝离子电池的 DESS 以及带有锂离子电池和超级电容器的 DESS。在公交车和轿车案例研究中,还将它们与全锂离子电动汽车电池在环境影响方面进行了比较。主要研究结果表明,使用 DESS 总体上减少了车辆使用寿命内对环境的影响,并为进一步开发用于此应用的水系铝离子电池提供了论据。
Khristina Maksudovna Vafaeva 1,2 , Denis Fedorovich Karpov 3 , Mikhail Vasilyevich Pavlov 4 , Namani Srinivas 5 , Wamika Goyal 6 , Gaurav Singh Negi 7 , Sakshi Sobti 8 , Rajireddy Soujnya 9 , Deepak Kumar Tiwari 10 1 Research Engineer, Peter the Great俄罗斯圣彼得堡的圣彼得堡理工学院2号研究与发展部,可爱的专业大学,Phagwara,Punjab,旁遮普邦,印度3热,天然气和供水系,Vologda州立大学,Vologda,Vologda,Vologda,Vologda,Heat,Gas and Water Supply Supply Suppliate Suppliant,Vologda State University,Vologda,Vologda,Vologda,Vologda Federation 5 Chilkur(VIL),Moinabad(M),Ranga Reddy(Dist),Hyderabad,500075,印度Telangana,印度。6 Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140417, Punjab, India 7 Uttaranchal University, Dehradun - 248007, India 8 Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh-174103 India 9 Department of CSE, GRIET, Bachupally, Hyderabad, Telangana, India.10,Mathura-281406 GLA大学土木工程系(U.P. ) ),印度对应的电子邮件:vafaeva.khm@gmail.com10,Mathura-281406 GLA大学土木工程系(U.P.),印度对应的电子邮件:vafaeva.khm@gmail.com
本正式销售通知本身并不构成对债券的投标邀请,而仅仅是本文所述债券的销售通知。投标邀请通过本正式销售通知、初步正式声明和随附的正式投标表格进行。本正式销售通知中包含的信息完全符合初步正式声明中包含的详细信息。正式销售通知 8,000,000 美元 特拉维斯县水利控制和改善区号。18(位于德克萨斯州特拉维斯县的德克萨斯州政治分支机构)水系统收入债券,2025 系列投标截止日期:2025 年 1 月 13 日星期一上午 10:00,CST 投标授予日期:2025 年 1 月 13 日星期一中午 12:00,CST 债券仅由特拉维斯县水资源控制和改善区承担。18 不是特拉维斯县、奥斯汀市、德克萨斯州或除该区以外的任何实体的义务。该区希望将债券指定为“合格
非水系钠电池是下一代电化学储能装置的理想候选者。然而,尽管其在室温下性能表现良好,但它们在低温(如 < 0 °C)下的操作会受到电解质电阻增加和固体电解质界面 (SEI) 不稳定性增加的不利影响。在此,为了解决这些问题,我们提出了特定的电解质配方,其中包括线性和环状醚基溶剂以及三氟甲磺酸钠盐,它们在低至 -150 °C 的温度下仍具有热稳定性,并能够在低温下形成稳定的 SEI。在 Na||Na 纽扣电池配置中测试时,低温电解质可实现低至 -80 °C 的长期循环。通过原位物理化学(例如 X 射线光电子能谱、低温透射电子显微镜和原子力显微镜)电极测量和密度泛函理论计算,我们研究了高效低温电化学性能的机制。我们还报告了在 -20°C 和 -60°C 之间对完整的 Na||Na 3 V 2 (PO 4 ) 3 纽扣电池的组装和测试。在 -40°C 下测试的电池显示初始放电容量为 68 mAh g -1,在 22 mA g -1 下经过 100 次循环后容量保持率约为 94%。
双(氟磺酰基)酰亚胺阴离子 (FSI − )、AlCl 4 − 和 (BrCl) n − 已被研究作为石墨插层化合物 (GIC) 的插层剂。[3] 由于电池结构简单,DIB 已从 Li [4] 扩展到 Na、[5] K、[6] Mg、[7] Ca、[8] 和 Zn 离子 [9] 体系。与有机或离子液体电解质不同,具有高安全性和低成本特点的水系电解质近年来正在蓬勃发展。[3f,10] 尽管已经取得了重大进展,但 DIB 面临的关键挑战在于设备级的低能量密度。以前提高 DIB 能量密度的尝试主要依靠使用浓电解质 [6,11] 来降低非活性溶剂的重量比。然而,只有在超高浓度下才能动力学抑制正极侧的阳极腐蚀。当 DIB 充电过程中消耗掉大部分电解质时,稳定性问题仍然存在。金属阳极的镀层剥离效率也在很大程度上取决于浓缩电解质下形成的钝化界面。在之前的 DIB 原型中,总是需要过量的金属阳极和电解质。最近,开发了“无阳极”锂金属电池概念,使用非活性基质作为集流体,[12] 这比锂金属更安全、更方便,而且
更广泛的背景 近年来,水系金属离子电池因其低成本和安全性而备受关注。其中,锌离子电池一直是研究的主要焦点。然而,铁比锌更便宜,在地壳中的储量也更丰富,有望成为替代金属阳极,尽管它仍未得到充分开发。可靠的铁离子电池正极对于推进其研究和商业化至关重要,这需要简单的制备工艺和易于理解的机制。在此,我们介绍了使用聚苯胺作为铁离子电池活性材料的夹层型和圆柱形正极。该正极不含粘合剂,通过简单的低压压制工艺制造而成。它在 5C 倍率下可提供 225 mA hg 1 的高容量(而聚苯胺的理论容量为 300 mA hg 1)。此外,我们的高负载电池在 15C 倍率下表现出 27000 次循环的长循环寿命和 82% 的容量保持率。我们还进行了系统的理论研究,阐明了在充电和放电过程中铁离子与聚苯胺结合后的电化学行为。因此,这项工作为在固定储能应用中使用铁离子电池提供了一种可靠且有前景的解决方案,其性能可能优于铅酸电池和锂离子电池。
摘要:只有使用家庭或大型光伏电站才能实现能源转换。然而,要高效利用光伏电力而不依赖于其他能源,只有使用电池才能实现。对不稳定可再生能源的固定存储需求不断增长,在成本、资源可用性和安全性方面提出了新的挑战。移动电话行业和当前对高压牵引电池的需求极大地推动了锂离子电池 (LIB) 的发展。这种全球成功之路主要基于其高能量密度。由于需求的变化,其他方面也凸显出来,需要重新平衡“电池生态系统”中的不同技术。在本文中,我们讨论了基于锌和二氧化锰的水系电池技术的发展,并确定了为什么反应机理和电解质领域的最新发现使得可充电 Zn-MnO 2 电池 (ZMB)(通常称为所谓的锌离子电池 (ZIB))在固定应用方面具有竞争力。最后,本文对当前实际应用面临的挑战和未来研究的概念进行了展望。本文旨在对 ZMB 的当前研究状态进行分类,并强调其在“电池生态系统”中进入市场的进一步潜力,讨论安全性、成本、循环寿命、能量和功率密度、材料丰富性、可持续性、建模和电池/模块开发等关键参数。
摘要:可充电铝离子水系电池(AIAB)因其经济、丰富、环保和安全优势,正在成为大规模电池系统的新兴竞争者。然而,由于天然氧化物屏障的形成,金属铝的高容量仍未得到开发。通过用离子液体混合物处理铝金属来去除氧化物解决了这个问题,但这种处理过的铝(TAl)在影响全电池性能方面的作用尚不完全清楚。同时,在铝金属上涂覆的涂层的稳定性和兼容性在全电池装配线中的长期处理中仍未得到探索。在这里,我们在全电池 AIAB 的背景下探讨了 TAl 的上述两个方面。首先,一种高度稳定的正极材料 NMnHCF 被证明可以通过从单斜相可逆地转变为四方相来成功存储铝离子。据报道,其高能量密度超过了以前的等效报告。其次,揭示了电解质-TAl 配对的组合显着影响整体电池性能;其中电解质电导率会影响铝电镀/剥离过电位,进而决定整体电池性能。我们还证明,TAl 上的氯化涂层在环境大气下至少可稳定 40 小时,并可防止电池制造和电化学循环过程中铝金属块再次氧化。
1. Kyeremateng, N. A.、Brousse, T. 和 Pech, D. (2016)。微型超级电容器作为片上电子设备的微型储能组件。Nat. Nanotechnol. 12,7。2. Long, J. W.、Dunn, B.、Rolison, D. R. 和 White, H. S. (2004)。三维电池架构。Chem. Rev. 104,4463-4492。3. Arthur, T. S.、Bates, D. J.、Cirigliano, N.、Johnson, D. C.、Malati, P.、Mosby, J. M.、Perre, E.、Rawls, M. T.、Prieto, A. L. 和 Dunn, B. (2011)。三维电极和电池架构。MRS Bull。 36 , 523-531。4. Roberts, M.、Johns, P.、Owen, J.、Brandell, D.、Edstrom, K.、El Enany, G.、Guery, C.、Golodnitsky, D.、Lacey, M.、Lecoeur, C. 等 (2011)。3D 锂离子电池——从基础到制造。J. Mater. Chem. 21 , 9876。5. Oudenhoven, J. F.、Baggetto, L. 和 Notten, P. H. (2011)。全固态锂离子微电池:各种三维概念的回顾。Adv. Energy Mater. 1 , 10-33。 6. Yabuuchi, N., Kubota, K., Dahbi, M., 和 Komaba, S. (2014)。钠离子电池的研究进展。Chem. Rev. 114 , 11636-11682。 7. Wu, X., Leonard, D. P., 和 Ji, X. (2017)。新兴非水系钾离子电池:挑战与机遇。Chem. Mater. 29 , 5031-5042。 8. Muldoon, J., Bucur, C. B., 和 Gregory, T. (2014)。非水系多价二次电池的探索:镁及其他。Chem. Rev. 114 , 11683-11720。 9. Dunn, B., Kamath, H., 和 Tarascon, J. M. (2011)。电网电能存储:电池的选择。科学 334, 928-935。 10. Ni, J. 和 Li, L. (2018)。用于钠微电池的自支撑三维阵列电极。副词。功能。马特。 28, 1704880。 11. Komaba, S.、Murata, W.、Ishikawa, T.、Yabuuchi, N.、Ozeki, T.、Nakayama, T.、Ogata, A.、Gotoh, K. 和 Fujiwara, K. (2011)。硬碳电极的电化学钠插入和固体电解质界面。副词。功能。马特。 21、3859-3867。 12. Wen, Y., He, K., Zhu, Y., Han, F., Xu, Y., Matsuda, I., Ishii, Y., Cumings, J., 和 Wang, C. (2014)。膨胀石墨作为钠离子电池的优质阳极。Nat. Commun. 5, 4033。13. Ni, J., Fu, S., Wu, C., Maier, J., Yu, Y., 和 Li, L. (2016)。硫掺杂 TiO 2 的自支撑纳米管阵列可实现超稳定和强大的钠存储。Adv. Mater. 28, 2259-2265。14. Fu, S., Ni, J., Xu, Y., Zhang, Q., 和 Li, L. (2016)。氢化驱动导电 Na 2 Ti 3 O 7 纳米阵列作为钠离子电池的坚固无粘合剂阳极。纳米快报。16,4544-4551。