本作品部分由美国国家可再生能源实验室撰写,该实验室由可持续能源联盟有限责任公司运营,为美国能源部 (DOE) 服务,合同号为 DE-AC36-08GO28308。本作品由美国国家科学基金会奖 1928237 和寒冷气候住房研究中心提供资金。本文表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留,而出版商在接受发表本文时,即承认美国政府保留非独占、已付费、不可撤销的全球许可,可出于美国政府目的出版或复制本作品的已出版形式,或允许他人这样做。
在气候变暖条件下,土壤无机碳(SIC)的储存和转换在调节土壤碳(C)动力学和大气CO 2中的含量中起着重要作用。碱性土壤中的碳酸盐形成可以以无机C的形式固定大量的C,从而导致土壤c下沉,并有可能减慢全球变暖趋势。因此,了解影响碳酸盐矿物形成的驱动因素可以帮助更好地预测未来的气候变化。迄今为止,大多数研究都集中在非生物驱动器(气候和土壤)上,而少数研究检查了生物驱动因素对碳酸盐形成和SIC库存的影响。在这项研究中,在藏族高原的贝卢赫盆地上分析了三个土壤层(0-5厘米,20-30厘米和50–60 cm)的SIC,方解石含量和土壤微生物群落。结果表明,在干旱和半干旱地区,SIC和土壤方解石含量在这三个土壤层之间没有显着差异。但是,影响不同土壤层中有方解石含量的主要因素是不同的。在表土(0-5厘米)中,方解石含量的最重要预测因子是土壤水含量。在下层土层中,分别为20–30 cm和50–60 cm,细菌生物量与真菌生物量(B/F)的比率分别比其他因素对方解石含量的变化具有更大的贡献。斜长石为微生物定殖提供了一个位点,而Ca 2 +在细菌介导的方解石形成中贡献。本研究旨在强调土壤微生物在管理土壤方解石含量中的重要性,并揭示了细菌介导的有机物转化为无机C的初步结果。
抽象的升高温度需要在北部多年冻土区的土壤水文过程中进行重要变化。使用图标 - 地铁系统模型,我们表明,基本上不透水的冷冻土壤层的大规模融化可能会引起正反馈,从而使多年冻土降解放大了病变变暖。地面解冻增加了其液压连通性,并提高了排水速率,从而有助于景观干燥。这限制了无雪季节蒸散量和低空云的形成。夏季多云的减少反过来增加了到达表面的短波辐射,因此温度并促进了永久冻土降解。我们的模拟进一步表明,永久冻土云反馈的后果可能不限于区域尺度。对于高纬度的多年冻土的近期损失,它们显示出对所有大陆和北端 - 半球海洋盆地的重大温度影响,从而将全球平均温度升高0.25 K.
永久冻土在世界各地的高纬度地区普遍存在,对寒冷地区的水文和生态有重大影响。气候变化可能会导致永久冻土分布发生变化,影响地下水和地表水相互作用、栖息地和生态系统、人造基础设施以及全球碳循环(Jorgenson 等人,2001 年;Nelson 等人,2002 年;Hinzman,2005 年;Walvoord 和 Striegl,2007 年;Froese 等人,2008 年;Schuur 等人,2008 年;Rowland 等人,2010 年)。目前,永久冻土的三维 (3-D) 分布受到严格限制,特别是在总永久冻土厚度的变化和未冻结区域或“taliks”的分布方面。缺乏对分布的了解限制了我们建立地下水流系统和地下水与地表水相互作用的现实概念和数值模型的能力。更好地了解当前的冻土分布对于提高我们对这些地区水文过程的了解以及评估生态系统、栖息地和基础设施对气候变化的脆弱性至关重要。绘制冻土图面临特殊挑战。由于冻土空间分布的预期变化,钻探等直接采样技术不足以表征冻土的范围或厚度,因为在寒冷地区此类数据稀疏。后勤问题也存在,因为冻土区通常道路很少,生态敏感,难以进入且成本高昂。地球物理方法提供了一种直接采样的替代方法,可以在有限的陆上旅行中提供更多空间连续的数据。地球物理方法测量地下物理特性的变化,例如电阻率、介电常数和地震速度。这些特性可能会有很大差异
气候变化是北极面临的最全面威胁,已达到前所未有的危机点 1 。北极对全球变暖尤其敏感——在过去 50 年里,它的变暖速度是地球平均变暖速度的三倍。目前北极海冰覆盖率处于至少 1850 年以来的最低水平,预计在 2050 年之前至少会达到一次夏季最低温度时几乎无冰的状态。此外,格陵兰冰盖正在减少,北极的永久冻土正在融化。这些相互关联的北极变化导致海平面上升,扰乱天气系统,导致海岸侵蚀、生物多样性丧失和相关生态系统的破坏。海冰缩小导致的反射损失(反照率效应)和永久冻土融化导致的温室气体释放进一步加速了气候变化,并可能导致触发气候系统的临界点。环境恶化加剧了这一严重后果,并蔓延至整个地球,以多种方式深刻影响着自然和人类,其中一些影响才刚刚显现。土著人民受到的打击尤其严重,不断恶化的形势将破坏子孙后代的前景。政府间气候变化专门委员会 (IPCC) 最近的报告再次强调了立即果断采取行动的紧迫性 2 。
亚太地区是地球上最多样化的地区 人民与制度:文化、语言、宗教和人民的多样性最为奇妙,生活在各种政治制度中 国家:人口最多的国家……人口最少的国家;高收入……中等收入……低收入;陆地面积从小到大 气候:永久冻土……热带天堂……季风……炎热的沙漠……寒冷的高海拔沙漠 地理:地球上最高的山脉……最低的海平面国家 道路:从各种交通方式混合的极其混乱的街道到井然有序、管理严格的街道;包含所有的政治制度,以及。
当全球气温超过工业化前水平 1.5°C 时,不可逆转的变暖将成为现实,因为地球上的一些景观将成为碳的净排放源(如永久冻土)或变暖的加速器(如海冰的消失)。世界经济论坛出版物《边缘商业:打造行业应对气候灾害的韧性》详细介绍了地球系统临界点 14 及其对景观、供应链和社会商业风险的影响。在这个人类世的新时代,未来几十年引发的变暖将影响地球数千年的气候(见图 6),因此了解和应对地球系统破坏已成为全球当务之急。
摘要。地表能量平衡是影响地面热状况的关键因素。随着气候变化,了解地表和地下各层中各个热通量的相互作用及其对多年冻土热状况的相对影响至关重要。分析了一组独特的高海拔气象测量数据,以确定瑞士阿尔卑斯山三个山地多年冻土站点(Murtèl–Corvatsch、Schilthorn 和 Stockhorn)的能量平衡,这些站点自 1990 年代末以来一直在瑞士多年冻土监测网络 (PERMOS) 框架内收集数据。所有站点都配备了四分量辐射、空气温度、湿度、风速和风向以及地面温度和积雪高度的传感器。这三个站点的表面和地面物质成分以及地面冰含量差异很大。能量通量是根据二十年的实地测量计算得出的。虽然辐射收支和地面热通量的确定相对简单(通过钻孔内的四分量辐射传感器和热敏电阻测量),但湍流显热和潜热通量的确定存在较大的不确定性。我们的结果表明,Murtèl–Corvatsch(1997–2018 年,海拔 2600 米)的平均气温为 −1.66 ◦ C,在测量期间上升了约 0.8 ◦ C。在 Schilthorn 站点(1999–2018 年,海拔 2900 米),测得的平均气温为 −2.60 ◦ C,平均上升了 1.0 ◦ C。Stockhorn 站点(2003–2018 年,海拔 3400 米)记录到的气温较低,平均为 −6 ◦ C。 18 ◦ C 并增加了 0.5 ◦ C。测量到的净辐射作为地表最重要的能量输入,显示出显著的差异,Murtèl–Corvatsch 的平均值为 30.59 W m − 2,Schilthorn 的平均值为 32.40 W m − 2,Stockhorn 的平均值为 6.91 W m − 2。使用鲍文比方法计算的湍流通量显示所有站点的值约为 7 到 13 W m − 2,使用总体方法计算的湍流通量显示所有站点的值约为 3 到 15 W m − 2。在融化积雪所用的能量方面观察到了很大的差异:在 Schilthorn 计算出的值为 8.46 W m − 2,在 Murtèl–Corvatsch 为 4.17 W m − 2,在 Stockhorn 为 2.26 W m − 2,反映了三个站点积雪高度的差异。总体而言,我们发现不同地点的能量通量存在相当大的差异。这些差异有助于解释和阐释大气变暖的原因。我们认识到净辐射和地面热通量之间存在很强的关系。我们的研究结果进一步证明了长期监测的重要性,以便更好地了解地表能量平衡成分的变化对永久冻土热状况的影响。所提供的数据集可用于改进永久冻土建模研究,例如,提高对永久冻土融化过程的了解。此处显示和描述的数据可在以下网站下载:https://doi.org/10.13093/permos-meteo-2021-01 (Hoelzle et al., 2021)。
什么是“泥炭地沼泽”,为什么要保护它们?沼泽是一种湿地景观,它积累了来自死植物物质的泥炭的有机材料,尤其是苔藓。可以在爱尔兰的许多地区,尤其是在中部地区和山区西部找到它们。沼泽不是爱尔兰独有的,但是在欧洲,只有芬兰比这个国家拥有更多的Boglands。世界上最大的沼泽地区被认为是在西伯利亚的永久冻土之下。对爱尔兰的Boglands的态度在上个世纪发展。对这些湿地的看法已经从被认为是荒地的,被用作燃料资源,现在越来越被视为必须保护和保存的独特且有价值的栖息地。的确,爱尔兰的Boglands对爱尔兰社会具有重要的文化,历史和生态价值。的确,爱尔兰的Boglands对爱尔兰社会具有重要的文化,历史和生态价值。