[2] Giridharan,Sumitra K. Prof MK。“使用磁场定向控制 (FOC) 降低转矩脉动 - BLDCM 与 PMSM 的比较。” [3] Rafaq,Muhammad Saad、Will Midgley 和 Thomas Steffen。“永磁同步电机转矩脉动最小化技术的最新进展回顾。” IEEE 工业信息学学报 (2023)。 [4] Yashvi N. Parmar,“永磁同步电机磁场定向控制的硬件实现”,国际创造性研究思想杂志 (IJCRT) www.ijcrt.org,第 6 卷,第 2 期,2018 年 4 月,ISSN:2320-2882。 [5] Gupta,Ashish 和 Sanjiv Kumar。“用于 asd 的三相空间矢量 pwm 电压源逆变器分析。”国际新兴技术与先进工程杂志 2.10 (2012):163-168。[6] Yusivar, Feri 等人。“永磁同步电机磁场定向控制的实现。”2014 年国际电气工程与计算机科学会议 (ICEECS)。IEEE,2014 年。[7] Jacob, Jose 和 A. Chitra。“空间矢量调制多电平逆变器供电 PMSMdrive 的磁场定向控制。”Energy Procedia 117 (2017):966-973。[8] Faturrohman, Rifal、Nanang Ismail 和 Mufid Ridlo Effendi。“基于 DSP tms320f28027f 的无刷直流电机速度控制系统。”2022 年第 16 届国际电信系统、服务和应用会议 (TSSA)。 IEEE,2022 年。[9] K. Kolano,“PMSM 电机矢量控制的新方法”,载于 IEEE Access,第 11 卷,第 43882 43890 页,2023 年,doi:10.1109/ACCESS.2023.3272273。[10] P ELLEGRINO、G IANMARIO 等人,“P ERFORMANCE
美国绝大多数公用事业规模的风力发电机组都依赖于外国采购的稀土永磁体,而这些永磁体容易受到供应链不确定性的影响。许多小型风力发电机原始设备制造商都致力于不断改进发电机设计,以降低材料和生产成本,并通过降低齿槽转矩和提高效率来提高性能。传统的设计和制造提供的机会有限。在这项工作中,我们利用聚合物粘结磁体和电气和结构钢的三维 (3D) 打印的最新进展,展示了 15 千瓦基线风力发电机的先进设计方法。我们探索了使用贝塞尔曲线的三种磁体参数化方法,从而产生对称、不对称和多材料磁体设计。我们采用多物理场方法,结合参数化计算机辅助设计建模、有限元分析和有针对性的抽样,以确定具有更多机会减少稀土材料、提高效率和最小化齿槽转矩的新型设计。结果表明,非对称极设计和多材料极设计提供了更大的机会,可以在与基线发电机性能相似的条件下将稀土磁体材料减少多达 35%,这表明超越传统对称限制并由 3D 打印允许的设计自由度有了更新的机会。
摘要 - 本文介绍了两种用于 42V 嵌入式应用的旋转电机设计程序。具体来说,对于电动助力转向,设计了由开关冗余功率转换器供电的三相内置式永磁同步电机 (PMSM) 和由新型六开关转换器供电的六相感应电机 (IM6),用于未来的 42V DC 系统。对于 PMSM,磁路已完全使用基于分析和有限元的软件优化进行设计。对于 IM6,使用了来自传统三相鼠笼式低功率感应机的经典磁路。根据功率重量比比较了最终设计结果。关键词:永磁同步机 - 感应机 - 容错设计 - 电动助力转向
用于传动系统应用的永磁电机和逆变器 在车辆系统中,功率密度是一个关键的设计因素。派克永磁交流 (PMAC) 电机的扭矩密度和速度能力与电压匹配逆变器相结合,可提供在各种车辆平台上实现突破性性能所需的速度和扭矩:• 大型货车 • 摩托车和踏板车 • 轻型商用车 • 船舶 • 个人休闲车 派克拥有遍布多个大洲的设计团队,拥有提供所需功率的最佳电机的专业知识。当整体尺寸和重量不是重要的设计因素时,派克还可以结合我们的逆变器系统提供高效交流感应电机。
执行。OEM 的采购部门缺乏完成这项工作的核心能力。一个完美的典型例子是通用汽车 (NYSE: GM) 对锂离子电池和稀土永磁电机 (REPMM) 的自然资源生产或最终用户产品制造供应链中的单一实体进行“投资”。OEM 未能注意到,除非存在垂直整合,以便成本可以沿着供应链分摊并产生有利可图的最终用途产品,否则补贴将成为强制性的。
电力电子是我的主要研究领域。在这个学科中,我一直致力于与双向无线电力传输 (WPT)、可再生能源电网整合、永磁电动机/发电机设计和控制以及电力转换器相关的各种开发和研究项目。目前,我专注于 V2G 应用的电动汽车 (EV) 双向无线充电、电动渡轮 (EF) 的有线和无线快速充电、高功率转换器、能源管理以及减轻电动汽车充电对电网的影响。
– 两台 120 kVA、115Vac、400Hz 发动机驱动发电机 – 一台 120 kVA、115Vac、400Hz 辅助动力装置 (APU) 驱动的发电机 – 四台 950 W 永磁发电机 (PMG) 集成到两台备用发电机中 – 一台 7.5kVA 冲压空气涡轮 (RAT) – 主电池、APU 电池和飞行控制电池 • 转换设备: – 四个 120 安培直流变压整流器单元(115Vac 至 28Vdc) – 电池充电器和逆变器
– 两台 120 kVA、115Vac、400Hz 发动机驱动发电机 – 一台 120 kVA、115Vac、400Hz 辅助动力装置 (APU) 驱动的发电机 – 四台 950 W 永磁发电机 (PMG) 集成到两台备用发电机中 – 一台 7.5kVA 冲压空气涡轮 (RAT) – 主电池、APU 电池和飞行控制电池 • 转换设备: – 四个 120 安培直流变压整流器单元(115Vac 至 28Vdc) – 电池充电器和逆变器
真空/鼓风机、永磁直流、高扭矩、步进和通用驱动电机和无刷直流电机、泵、无刷和再生鼓风机以及基于控制器的解决方案,适用于众多应用。Lamb 和 Prestolite 品牌电机用于洗车、中央吸尘器、商用/家用地板护理、草坪和花园、材料处理和其他类似应用。ROTRON、Windjammer 和 Nautilair 品牌用于运输、燃料电池、医疗设备、包装设备、泵、压缩机、商用机器、印刷设备、化学加工、水产养殖、电动汽车、液压泵、电镀、烟雾/烟气去除系统和精密流体运动应用。
1. 电动汽车的牵引力从何而来 选项 A:电池 选项 B:转换器 选项 C:驱动轴 选项 D:电机 2. 超级电容器很难单独用作电动汽车和混合动力汽车的储能装置,因为它们的 选项 A:高比能量密度,且电压取决于 SOC 选项 B:低比能量密度,且电压取决于 SOC 选项 C:低比能量密度,且电压与 SOC 无关 选项 D:高比能量密度,且电压与 SOC 无关 3. 电池供电马车是在哪一年开发的 选项 A:1874 年 选项 B:1889 年 选项 C:1857 年 选项 D:1850 年 4. 燃料电池提供 ___________ 能量,但 _________ 功率 选项 A:高、低 选项 B:适中、适中 选项 C:适中、低 选项 D:低、低 5. 爬坡能力定义为最大车辆在整个速度范围内可以克服的最大角度 选项 A:坡度 选项 B:升高 选项 C:斜坡 选项 D:平面 6. 车辆上坡或下坡时,其重量会产生一个始终指向 __________ 的分力 选项 A:向上 选项 B:向下 选项 C:向左行驶 选项 D:向右行驶 7. 具有正弦气隙磁通分布的永磁电动机称为 选项 A:永磁同步电动机 选项 B:无刷直流电动机 选项 C:无刷交流电动机