2011 年,ABB 推出了一款高效同步磁阻电机 (SynRM IE4),该电机无需使用稀土磁铁即可提供永磁技术的性能优势。工业设备案例研究表明,根据应用情况,该电机可节省高达 25% 的能源。该电机技术的其他优势包括降低轴承和绕组温度,从而提高可靠性和延长使用寿命。该设计还可以降低电机噪音,从而改善工作环境。SynRM 电机现在符合国际电工委员会 (IEC) 定义的全新 IE5 超高级能效等级。与常用的 IE2 感应电机相比,这些电机的能量损失降低了 50%,能耗显著降低。SynRM 电机由变速驱动器控制,可进一步最大程度地节省能源。
提出了一种带有实用发电装置 (EGU) 的创新型便携式自供电数字肺气流计,用于监测哮喘和测量呼气强度,使用 EGU 产生的电信号。当鼓风机使用该仪器时,EGU 必须能够为所提出的测量仪器提供足够的电力。EGU 由气动涡轮机和高效发电机组成。采用佩尔顿涡轮机形式的气动涡轮机,其空气阻力较小,可增加发电的机械功率。本文还使用无铁心轴向磁通永磁 (AFPM) 发电机来测量呼气强度,该发电机具有结构简单、齿槽转矩较低、重量轻和体积小的优点。实验结果表明,所提出的 EGU 性能优异,为所提出的便携式自供电设备提供足够的电力,且无振动和噪音。 2013 Trade Science Inc. - 印度
摘要:为防止化石资源枯竭并保护自然平衡,可再生资源成为化石资源的替代品。风能资源是可再生能源之一,在确保能源可靠性和资源利用方面具有重要意义。发电机是风能转换的最重要部件。永磁同步发电机 (PMSG) 是风力涡轮机的首选,因为它们具有高效率和高体积/扭矩密度,因此 PMSG 的优化是风能界的一个重要课题。一方面,这些机器在长期运行过程中可能会因过热和机械摩擦而引起问题。为了确定由于退磁故障导致的机器性能缺陷,我们进行了系统的工作。当 PMSG 的磁体以不同的速率(即 33%、50% 和 100%)退磁时,我们探索了发电中的伪影。此外,还检查了发电机在额定负载下的扭矩性能并揭示了磁通密度分布。当磁铁的退磁率增加时,额定扭矩大幅下降。
控制面板 发动机仪表板 壁挂式 EMCP II+ 独立水套水和后冷却器回路 入口/出口连接 高温发动机驱动的 JW 泵。恒温器和外壳 发动机驱动的交流泵 干式排气 柔性接头:弯头、法兰和膨胀器 消声器和带比较法兰的火花抑制消声器 燃料 客户或经销商提供的空燃比控制 后入口连接 SR4B 发电机,包括: 固定安装的断路器 永磁励磁 中压或高压 模绕定子 轴承温度检测器 (RTD) 定子 RTD 低压扩展盒 带 PF/kVAR 的 Cat 数字电压调节器 (Cat DVR) 带 PF/kVAR 控制的电缆接入盒 发电机空气滤清器 空间加热器 欧洲母线 无标准速度控制 散装 2301A 速度控制器 2301A 负载共享调速器 2301D 双增益调速器
螺旋弹簧储能技术是一种极具潜力的新兴储能技术,利用永磁同步电机通过收紧或释放螺旋弹簧进行能量转换。针对螺旋弹簧在运行过程中扭矩与惯性同时变化的特点,采用传统的矢量控制方式,螺旋弹簧储能系统难以在调节电网输入/输出功率方面表现出良好的控制性能。提出一种基于电流矢量定向反步控制的网侧变流器(GSC)与机侧变流器(MSC)一体化的螺旋弹簧储能系统与电网功率协调控制方案。首先,建立电流矢量定向坐标系下GSC与PMSM的数学模型。其次,利用反步控制原理设计协调控制方案,并从理论上证明其稳定性。然后,通过考察期望控制性能确定控制方案中的最优控制参数。最后,仿真与实验结果表明,所提出的控制方案在选定的控制参数下,能够很好地协调GSC与MSC,准确、快速地跟踪功率信号,有效提高SSES系统的运行性能及其与电网的能量交换。
摘要 — 太阳能汽车在能源管理技术(包括光伏和储能系统)方面仍然存在局限性。能源效率和轻量化是汽车成功的重要因素。为了实现这一目标,本文选择了 5 kWh 锂离子电池、2 kW 轮内轴向磁通永磁无刷直流电机(额定电压为 48 V)和 1035 W 单晶 PV 模块来满足这些限制。此外,超级电容器用作第二个储能装置,以利用快速充电和放电的优势。降压-升压转换器旨在调节 PV 板、电池和超级电容器这三个电源的输出电压。为了从 PV 模块中获取最大功率,通过使用 Matlab/Simulink 开发 PV 模型,研究了 PV 模块 IV 和 PV 特性在太阳辐射和温度的影响下。此外,还开发并实施了最大功率点跟踪器模型,使用扰动和观察技术来选择最佳点。此外,在不同的操作条件下,使用前面提到的三个根据负载的功率需求供电的能源来考虑不同的能源管理情况。
预计未来20年中国将需要750架新建或改装货机,全球90%的改装货机来自中国[1,2]。但中国国内企业在工程设计、适航取证、改装、维修等产业链中仍处于底端。难点之一是缺乏符合民机适航标准、拥有知识产权、供应链完整的货舱门执行器[3,4]。考虑到ARJ21-700主货舱门尺寸庞大、结构重量较大,MCDAS由锁定执行器、闩锁执行器和升力执行器组成,依次控制锁定机构、闩锁机构和升力机构,实现货舱门的开闭。执行器位置图如图所示。1.每个执行器都是机电式,由电动机、减速齿轮系、输出轴和手动驱动机构组成。当向电动机供电时,电动机的输出扭矩通过减速正齿轮和行星齿轮传递到输出轴 [ 5 ]。锁执行器是由低功率永磁同步电动机驱动的线性执行器,而闩锁和升降执行器是由交流 (AC) 电动机驱动的旋转执行器。ACE 关于锁执行器的部分参考文献 [ 6 ]。
在对混合伺服驱动器进行任何接线之前,必须断开交流输入电源。 即使电源已关闭,在电源 LED 熄灭之前,直流链路电容器中仍可能残留具有危险电压的电荷。请勿触摸内部电路和组件。为了安全维护,请使用万用表测量 +1 和 – 端子之间的电压。测量值应低于 25V DC,系统才能正常运行。 印刷电路板上有高灵敏度的 MOS 元件。这些组件对静电特别敏感。在采取防静电措施之前,请勿触摸这些组件或电路板。切勿重新组装内部组件或接线。 使用接地端子将混合伺服驱动器接地。接地方式必须符合交流马达驱动器安装地区法规。 本系列产品用于控制三相感应马达及永磁同步马达。不可用于单相马达或其他用途。 本系列产品不可使用于可能危及人身安全的场合。 请防止儿童或未经授权的人员接近混合伺服驱动器。
近年来,人们越来越重视利用能源储存来增强电网抵御破坏性事件的能力。虽然可再生能源供应不断扩大,但基于重力的解决方案(如抽水蓄能)在商业领域仍然占主导地位。然而,它们的地理限制限制了可用性、可扩展性,并增加了太阳能和风能共置的成本。另一种方法是重新利用位于现有电网基础设施附近的闲置油气井,这是一种有前途且经济高效的解决方案。本文讨论了在 300 米井中与内部永磁同步机耦合的再生驱动系统的优化和控制,该井的重量为 100 牛顿。该研究采用动态 MATLAB/Simulink 模型来模拟电力传动系统在储存和放电操作期间的运行。结果表明,仅电气系统的初始往返效率就为 85.9%,并确定了最大化效率的关键因素。机电传动系统的优化运行和控制具有巨大的潜力,可以最大限度地降低存储的平准化成本,同时最大限度地提高效率和创收。
摘要:电动和混合动力飞机推进系统正在迅速改变移动技术。航空旅行已成为减少温室气体排放的主要焦点。飞机部件的电气化可以带来多种好处,例如减轻重量、减少环境影响、降低燃料消耗、提高可靠性和加快故障解决速度。由于对高功率、高效和容错飞行部件的需求不断增加,推进、驱动和发电是电动飞机技术的三个重点关注领域。环保飞机系统的必要性促使航空航天工业使用电动驱动系统,而不是传统的机械、气动或液压系统。在此背景下,本文结合一些与工业相关的讨论,回顾了电动技术的当前现状和未来发展。在这项研究中,永磁电机被确定为飞机子系统最高效的机器。结果表明,其功率密度比开关磁阻电机和感应电机高 78% 和 60%。还分析了几种缩小现有和未来设计差距的开发方法,包括嵌入式冷却系统、高导热绝缘材料、薄规格高强度电工钢和集成电机驱动拓扑。