1. 项目摘要 目前,履带式移动骨料破碎机主要由柴油发动机驱动,驱动液压、机械离合器或电力驱动系统。该项目旨在开发和制造履带式移动骨料破碎机的工作原型,该破碎机配备下一代永磁电机和 DC(直流)总线驱动系统。作为项目的一部分,牵头组织(特雷克斯)与女王大学和其他组织(了解该技术)合作,协助将其应用于履带式移动骨料破碎机。作为技术设计的一部分,对破碎机的运行进行了分析,以了解工作周期以及该技术在其中的工作原理。此外,作为整个项目的一部分,还研究了可提供净零电能的替代电源,适合在没有主电源的地方为机械提供动力。该项目的主要目标是开发一种效率更高的履带式移动骨料破碎机,将柴油消耗量减少 20%,未来在有电源的情况下,燃料消耗量有望进一步减少高达 90%。本项目开发的技术也适用于其他半移动应用,例如环境处理设备(如 Terex Ecotec 粉碎机)。1.1 项目组织
领先的风力涡轮机制造商正在竞相制造更大、更强大的海上机器。传动系统配置通常使用永磁同步发电机 (PMSG),要么是直接驱动配置,要么与变速箱耦合。随着对关键稀土磁体的需求不断增加,新的发电机技术正在涌现,以确保稳定和安全的供应链。我们评估了三种不同的径向磁通同步发电机拓扑结构,这些发电机采用稀土含量减少或不含有稀土的高磁场磁体:直接驱动内部 PMSG (DD-IPMSG)、结合中速变速箱和 PMSG (MS-PMSG) 的齿轮传动系统和直接驱动低温超导发电机 (DD-LTSG)。我们在更大的完整涡轮机设计框架内为每种技术开发了一个概念设计模块。这为标称功率为 15-25 MW 的技术提供了最公平的比较,这些技术代表了下一代海上风力涡轮机。分析表明,如果各项技术的运营支出 (OpEx) 保持不变,则 MS-PMSG 可实现最低的 LCOE,与 DD-IPMSG 相比可降低高达 7%。DD-LTSG 还可使固定底部风力涡轮机的 LCOE 值降低 2%–3%,浮动平台的 LCOE 值降低 3%–5%。然而,结果对 OpEx 假设很敏感,仅仅增加 10% 就会导致结论发生变化。
在 PPMT 电机中,转子类似于传统的可变磁阻电机 (VRM)。VRM 通常用于步进电机。与 VRM 一样,PPMT 电机的转子是高磁导率铁层压板,转子上没有线圈或磁铁。这就是它与 VRM 的相似之处。与 VRM 不同,PPMT 电机的定子部分包括永磁体。对于每对磁铁,定子上缠绕有两个线圈。在传统的 VRM 中,线圈缠绕在每个定子极上,电流流过这些线圈产生的磁通用于产生扭矩。在 PPMT 电机中,永磁体磁通加上负载电流产生的感应磁通相加产生轴扭矩。定子线圈切换的适当时机可优化扭矩。线圈提供磁通控制服务,在适当的时间将永磁体的磁通引导到适当的极点以产生扭矩。由于永磁通量产生的补充功率,所需的输入功率远低于传统电机产生每磅扭矩所需的功率。因此,PPMT 电机效率更高。PPMT 电机在连续工作应用中具有出色的性能。与传统电机的连续工作额定值相比,PPMT 电机比任何传统设计都更轻、更小、效率更高。
电能在航空网络中发挥着越来越重要的作用。这导致电力电子技术的强势崛起,它成为获得高性能、可靠和有竞争力的系统的关键技术领域。本论文是基于通用和模块化转换元件的电能处理架构辅助设计方法的一部分。在“更电气化”飞机网络框架内建立了静态转换器应用的普查,以划定转换模块的结构周长。这些元素的模块化为电源分段和冗余开辟了道路,建议通过实施容错转换器来利用这些功能,以提高系统的运行可用性。从这个角度来看,通过分析和基于电动静液飞行控制执行器多物理模型的仿真,对几种逆变器拓扑进行了比较。作为实验研究的一部分,所生产的转换模块特别包括用于实现可重构逆变器的适当功能,专用于永磁同步机的电源。该逆变器具有共享冗余,形式为连接到机器中性的第四个开关单元。最后,为了扩展该通用模块的范围,提出了不同的 AC-DC 转换拓扑来优化能源管理,与传统解决方案相比。通过对电气和热标准的定量比较,我们可以考虑每种结构的优点。
近年来,储能系统 (ESS) 在现代电力系统中发挥着重要作用,可提高系统稳定性和可靠性。本文介绍了 SMES 在提高与风能和太阳能光伏等混合可再生能源系统 (RES) 互连的多机电力系统稳定性方面的作用。它通过在多机系统中的不同位置创建对称故障来研究系统的暂态稳定性。混合 RES 模拟等效聚合 75 MW 光伏阵列和容量为 300 MW PMSG(永磁同步发电机)的风力涡轮机。它通过电压源和直流/直流升压转换器耦合公共直流链路。电压源逆变器与升压变压器和输电线相连,连接到多机系统。电压源转换器和逆变器使用模型预测控制器 (MPC) 来获得更好的输出电压曲线并提高系统稳定性。SMES 通过带有 PID-SDC(比例积分微分补充阻尼控制器)的直流/直流转换器连接。该系统能有效抑制发电波动时的功率振荡和平滑。该系统能降低系统各位置三相故障时多机侧的低频振荡。故障清除后系统稳定性提高 3.36 秒。利用 MATLAB/SIMULINK 软件进行时域仿真,研究整个系统的有效性。
• 滞后:AIR 403 调节控制电路现在包含滞后。一旦电池充满电,这将使涡轮机锁定在静音调节模式。当涡轮机感应到电池电压略低于满电电压时,它会再次开始发电。这意味着,对于工厂设置的 12V 涡轮机,当电池电压达到 14.1V 时,涡轮机将进行调节(关闭),当电压降至略低于满电电压的 12.6V 时,涡轮机将恢复充电。浪费的输出最少,因为 12.6V 以上的非充电电池电压主要代表“表面电荷”,能量很少。此功能可防止涡轮机在调节模式内外波动,从而使机器更安静、性能更好。 • 新型电子设备:AIR 403 包含一个专用电源整流器,可将多余的热量直接散发到机身上。调节电子设备已得到增强,可在最极端的操作条件下实现更强大的控制和可靠性。 • 新型交流发电机:新型 AIR 403 内置了更强大的交流发电机。在旋转叶片轴时可以感觉到更强大的永磁转子;用手指旋转轴时可以感觉到轻微的“卡住”。这是正常现象,当叶片开始旋转时很快就会克服。 • 新型叶片:转子叶片经过重新设计,采用新型、高效的真翼型。全新的精密注塑模具可生产出具有卓越一致性的叶片,从而实现
如果没有各种薄膜涂层应用方法,现代技术将难以想象。在各种切削工具(钻头、刀具、铣床等)上沉积硬化涂层可以减少磨损并延长其使用寿命。在不同光学部件表面沉积薄膜,可以获得具有所需参数的产品。对于微电子技术来说,涂层厚度从几纳米到几十微米不等。磁控溅射目前被广泛用于涂覆各种材料的薄膜。在此过程中,靶材阴极在真空室中被工作气体的离子溅射,从而在零件上沉积薄膜涂层 [1 – 5] 。磁控溅射系统 (MSS) 的主要缺点是所生产涂层中原子的能量成本很高 [6,7]。但是,如果阴极处于液相,则可以将涂层涂覆率提高 10 倍,并将能源成本降低 1/4,同时保持涂层质量。涂层形成率与典型的真空电弧蒸发 [ 1 ] 相当。阴极材料利用率低(不高于 40%)是采用固相阴极的 MSS 的另一个缺点。采用液体阴极的 MSS 可以将材料利用率提高到几乎 100%,从而大大降低经济成本并实现无浪费生产。本研究的目的是根据从液相溅射的锡阴极的实验数据来选择加工模式并评估阴极溅射系数和放电参数。阴极溅射是使用经过改装的永磁磁控溅射系统进行的,以便
本文对纯电动汽车 (BEV) 推进系统的电动机驱动器进行了分析。本文对电动汽车 (EV) 应用中常用的交流和直流电动机驱动器进行了全面的回顾和数学分析。各种类型的电动机驱动器已用于 EV 推进,其中,永磁同步电动机 (PMSM) 驱动器是最佳选择。PMSM 驱动器具有卓越的性能和众多优势,包括结构坚固、效率高、尺寸紧凑、维护成本低和扭矩波动最小。与其他电机相比,这些特性使其成为更适合 EV 推进的选择。本研究调查了 PMSM 驱动器与 EV 推进系统中使用的其他竞争性电动机驱动器(即无刷直流电机 (BLDCM)、感应电机 (IM) 和开关磁阻电机 (SRM))相比的性能。评估侧重于电动机的关键标准——输出功率和扭矩密度,这对于在 EV 推进系统中的有效应用至关重要。本文介绍了两种著名 PM 电机系列(PMSM 和 BLDCM)之间的新型数学和分析关系。这两种电机在功率和扭矩输出方面都极具竞争力。数学分析和图形绘图模拟结果表明,PMSM 驱动器在三种电机驱动器中提供最高的功率和扭矩密度。具体而言,在功率因数、尺寸、额定值和效率等操作参数相同的情况下,PMSM 驱动器的功率和扭矩密度比 BLDCM 驱动器高 29.90%,比 SRM 驱动器高 88.68%,比 IM 驱动器高出惊人的 200%。这些发现凸显了 PMSM 驱动器的显著优势,使其成为电动汽车推进系统的上佳选择。
高效电力驱动项目启动:德累斯顿弗劳恩霍夫 IFAM 研究所开发混合金属板 德累斯顿弗劳恩霍夫制造技术与先进材料研究所 (IFAM) 正在与合作伙伴合作开展一个新项目,开发用于电力驱动的混合电气板。在西门子的协调下,“InnoBlech”项目正在基于增材丝网印刷技术开发用于电力驱动的创新电气板。其他合作伙伴包括达姆施塔特工业大学、Ford-Werke GmbH 和 EKRA Automatisierungs GmbH 公司。“InnoBlech”的核心开发目标是为磁阻或 PMSM/IPM 电机的转子提供机械和磁性改进的金属板封装。该项目基于资源高效的 3D 丝网印刷工艺,旨在有针对性地全面改善金属板封装的机械和磁性。丝网印刷工艺不仅可以使电工薄板更薄、更高效,而且可以将不同的材料或合金并排或叠放在一起。这样,电工薄板就可以采用新的设计,并制造出具有局部适应的磁性能的薄板。该技术方法是在丝网印刷工艺中通过共烧结将不同的软磁材料相互结合或将软磁和非磁性铁基合金结合在一起。为此,将进一步开发已以丝网印刷为基础开发的铁基混合材料,以用于优化的电驱动混合转子叠片,特别是磁阻和永磁同步 (PMSM、IPM) 电机。具体来说,将解决以下具体开发目标:
反应混合物的仪器分析通常是化学过程优化中的速率控制步骤。传统上,反应分析采用气相色谱 (GC)、高效液相色谱 (HPLC) 或高场波谱仪上的定量核磁共振 (qNMR) 波谱法。然而,色谱法需要复杂的后处理和校准方案,而高场 NMR 波谱仪的购置和操作成本高昂。我们在此公开了一种基于低场台式 NMR 波谱法的廉价高效分析方法。其主要特点是使用氟标记的模型底物,由于 19F 具有宽的化学位移范围和高灵敏度,即使在低场永磁波谱仪上也能对产物和副产物信号进行独立、定量的检测。外部锁定/垫片装置无需使用氘代溶剂,只需极少的后处理即可直接、非侵入性地测量粗反应混合物。低场强可在较宽的化学位移范围内实现均匀激发,从而最大限度地减少系统积分误差。添加适量的非位移弛豫剂 Fe(acac)3 可最大限度地减少全分辨率下的弛豫延迟,将每个样品的分析时间缩短至 32 秒。正确选择处理参数也至关重要。本文提供了分步指南,讨论了所有参数的影响,并重点指出了潜在的陷阱。文中通过三个示例说明了该分析方案在反应优化中的广泛适用性:Buchwald-Hartwig 胺化反应、Suzuki 偶联反应和 C–H 官能化反应。