沃尔夫斯堡,2023 年 6 月 21 日——大众汽车集团正在重点关注其战略调整。在资本市场日上,该集团展示了强调客户导向、企业家精神和团队精神的领导原则。该集团将其回报目标的责任分配给品牌。为了实现这些目标,特别是加强盈利能力和现金流以及降低资本强度,每个品牌都首次推出了自己的绩效计划。这涉及范式转变:未来将不再单纯追求数量增长,而是根据“价值高于数量”的原则优先考虑可持续的价值创造。为了使他们能够充分利用技术平台提供的规模经济,该集团正在重新调整其架构、电池、软件和移动服务。在区域方面,该集团将投资重点放在世界上最具吸引力的利润池上。在此背景下,针对中国和北美重要增长市场的战略也得到了改进。基于品牌的专注方法和绩效计划,该集团正在将其战略销售回报率目标提高到 2030 年的 9% 至 11%。
锂离子电池在当今的应用中无处不在,从便携式电子设备到电动汽车。无论何种应用,车载计算机对电池健康状态 (SOH) 进行可靠的实时估计对于电池的安全运行至关重要,最终可保障资产的完整性。在本文中,我们设计并评估了一个机器学习管道,用于估计电池容量衰减(电池健康状况的指标),该管道基于 179 个在不同条件下循环的电池。该管道使用两个参数算法和两个非参数算法来估计电池 SOH 及其相关的置信区间。使用充电电压和电流曲线的片段,该管道设计了 30 个特征,执行自动特征选择并校准算法。当部署在快速充电协议下运行的电池上时,最佳模型实现了 0.45% 的均方根百分比误差。这项工作为可扩展数据驱动的电池 SOH 估计模型的设计提供了见解,强调了预测置信区间的价值。管道方法将实验数据与机器学习模型相结合,并可推广到需要实时估计 SOH 的其他关键组件。
sylvain.poulet@cea.fr 摘要 — 超薄基板上柔性薄膜电子设备的出现是由开发与前端和后端工艺完全兼容的替代处理方法的需求所驱动。这项研究的目的是提出一种新的超薄玻璃基板处理方法,该方法基于直接玻璃-玻璃键合和室温剥离脱粘。通过在超薄玻璃基板(<100µm)上实现薄膜电池(<20µm)来评估这一概念。为了键合,将超薄玻璃层压在厚的载体玻璃(>500µm)上,没有中间层。薄膜电池堆栈采用连续物理气相沉积法制造,温度高达 400°C。脱粘过程在室温下通过机械剥离层压在薄膜电池上的封装膜完成。结果,脱粘后超薄玻璃(<100µm)没有任何裂纹的迹象。此外,脱粘过程之前和之后进行的电化学阻抗谱 (EIS) 和恒电流循环表明器件性能略有稳定。
____ 15. 在以下情况下,电容器极板之间的电荷积累会停止: a. 极板上没有净电荷。 b. 极板上积累的电荷量不等。 c. 极板之间的电位差等于电池端子之间的电位差。 d. 两个极板上的电荷相同。 ____ 16. 将充电电容器的净电荷与同一电容器不充电时的净电荷进行比较, 则净电荷为: a. 充电电容器中的净电荷较大。 b. 充电电容器中的净电荷较少。 c. 两个电容器中的净电荷相等。 d. 充电电容器中的净电荷或多或少,但永远不会相等。 ____ 17. 电容器放电时, a. 必须将其连接到电池上。 b. 电荷通过电路从一个极板移回另一个极板,直到两个极板都没有电荷。 c. 电荷从一个极板移动到另一个极板,直到极板上积累大小相等且方向相反的电荷。 d. 不能将其连接到导电材料上。
焊接对薄型硅太阳能电池造成的损伤以及模块中破裂电池的检测 Andrew M. Gabor、Mike Ralli、Shaun Montminy、Luis Alegria、Chris Bordonaro、Joe Woods、Larry Felton Evergreen Solar, Inc. 138 Bartlett St., Marlborough, MA 01752, 508-597-2317, agabor@evergreensolar.com Max Davis、Brian Atchley、Tyler Williams GreenMountain Engineering 500 Third St, Suite 265, San Francisco, CA 94107 摘要:降低光伏制造成本的需求加上目前多晶硅原料的短缺导致硅片和电池厚度不断减小。工艺、材料和处理设备必须进行调整以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将电线焊接到电池上是变得更具挑战性的步骤之一。电池可能在加工过程中破裂,或者由于加工过程中的损坏导致模块破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 开发了有助于优化工艺、设备和材料的工具,并开发了改进的模块级裂纹检测方法。在本文中,我们描述了一种电池破损强度测试仪,我们将其构建为一种快速反馈和质量控制工具,用于改进和监控焊接过程。我们还描述了一种电致发光裂纹检测系统,我们开发该系统是为了快速、无损地对模块中破裂的电池进行成像。有限元建模用于解释为什么与背面相比,在模块的玻璃面上加载时电池更容易破裂。关键词:模块制造、可靠性、焊接 1 简介 降低光伏制造成本的需求加上目前多晶硅原料的短缺,正在推动晶圆和电池厚度的稳步下降。工艺、材料和处理设备必须适应以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将导线焊接到电池上是更具挑战性的步骤之一。电池可能会在此过程中破裂,或者由于在此过程中造成的损坏,模块随后会破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 正在研究裂纹形成的机制,并正在开发有助于优化工艺和材料的工具,并正在开发模块级裂纹检测的改进方法。
焊接对薄型硅太阳能电池造成的损伤以及模块中破裂电池的检测 Andrew M. Gabor、Mike Ralli、Shaun Montminy、Luis Alegria、Chris Bordonaro、Joe Woods、Larry Felton Evergreen Solar, Inc. 138 Bartlett St., Marlborough, MA 01752, 508-597-2317, agabor@evergreensolar.com Max Davis、Brian Atchley、Tyler Williams GreenMountain Engineering 500 Third St, Suite 265, San Francisco, CA 94107 摘要:降低光伏制造成本的需求加上目前多晶硅原料的短缺导致硅片和电池厚度不断减小。工艺、材料和处理设备必须进行调整以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将电线焊接到电池上是变得更具挑战性的步骤之一。电池可能在加工过程中破裂,或者由于加工过程中的损坏导致模块破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 开发了有助于优化工艺、设备和材料的工具,并开发了改进的模块级裂纹检测方法。在本文中,我们描述了一种电池破损强度测试仪,我们将其构建为一种快速反馈和质量控制工具,用于改进和监控焊接过程。我们还描述了一种电致发光裂纹检测系统,我们开发该系统是为了快速、无损地对模块中破裂的电池进行成像。有限元建模用于解释为什么与背面相比,在模块的玻璃面上加载时电池更容易破裂。关键词:模块制造、可靠性、焊接 1 简介 降低光伏制造成本的需求加上目前多晶硅原料的短缺,正在推动晶圆和电池厚度的稳步下降。工艺、材料和处理设备必须适应以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将导线焊接到电池上是更具挑战性的步骤之一。电池可能会在此过程中破裂,或者由于在此过程中造成的损坏,模块随后会破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 正在研究裂纹形成的机制,并正在开发有助于优化工艺和材料的工具,并正在开发模块级裂纹检测的改进方法。
焊接对薄型硅太阳能电池造成的损伤以及模块中破裂电池的检测 Andrew M. Gabor、Mike Ralli、Shaun Montminy、Luis Alegria、Chris Bordonaro、Joe Woods、Larry Felton Evergreen Solar, Inc. 138 Bartlett St., Marlborough, MA 01752, 508-597-2317, agabor@evergreensolar.com Max Davis、Brian Atchley、Tyler Williams GreenMountain Engineering 500 Third St, Suite 265, San Francisco, CA 94107 摘要:降低光伏制造成本的需求加上目前多晶硅原料的短缺导致硅片和电池厚度不断减小。工艺、材料和处理设备必须进行调整以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将电线焊接到电池上是变得更具挑战性的步骤之一。电池可能在加工过程中破裂,或者由于加工过程中的损坏导致模块破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 开发了有助于优化工艺、设备和材料的工具,并开发了改进的模块级裂纹检测方法。在本文中,我们描述了一种电池破损强度测试仪,我们将其构建为一种快速反馈和质量控制工具,用于改进和监控焊接过程。我们还描述了一种电致发光裂纹检测系统,我们开发该系统是为了快速、无损地对模块中破裂的电池进行成像。有限元建模用于解释为什么与背面相比,在模块的玻璃面上加载时电池更容易破裂。关键词:模块制造、可靠性、焊接 1 简介 降低光伏制造成本的需求加上目前多晶硅原料的短缺,正在推动晶圆和电池厚度的稳步下降。工艺、材料和处理设备必须适应以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将导线焊接到电池上是更具挑战性的步骤之一。电池可能会在此过程中破裂,或者由于在此过程中造成的损坏,模块随后会破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 正在研究裂纹形成的机制,并正在开发有助于优化工艺和材料的工具,并正在开发模块级裂纹检测的改进方法。
•更改投掷特征或它们所在的位置。在娱乐环境中预防物理环境的一个经典例子是用小狭窄的眼镜捐赠酒精。饮酒量下降[6.7]。另一个示例是不要将声音音量设置得太高。更高的声音量与饮酒速度更多[8.9]。•在该位置进行调整。人群和人群的流动较差,通风不良,肮脏的空间和温度过高与更多的醉酒和侵略风险增加有关(或无关)[10.12]。人们必须坐在所谓的“放松”地方[10.13]也很重要。减少了侵略性和健康事件的机会。通过照明,它是平衡的。太明亮的照明会引起客人的刺激。,但是必须有足够的照明才能看到舞池上正在发生的事情。这减少了不良行为的机会,例如吸毒,交易和性跨境行为[10]。•提供饮酒的替代品。通过拥有健康的替代品,人们喝少喝酒并减少了饮酒的不利后果的机会[10.14]。例如,这是提供免费的水,提供吸引人和多样化的无酒精饮料,并确保人们也可以购买食物。
摘要:目前,在欧洲的几条铁路网络中,使用传统的直流电气化系统,既无法增加交通量,也无法使机车以标称功率运行。轨道旁储能系统 (TESS) 可以作为新建变电站的替代解决方案。TESS 限制接触线电压下降并平滑高峰交通期间吸收的功率。因此,可以在限制成本和环境影响的同时提高电力系统的效率。本文提出了一种基于全 SiC 隔离 DC/DC 转换器的 TESS 新拓扑,该转换器与锂离子电池和电流隔离相结合,为运行安全提供了重大优势。发生故障时,转换器的输入和输出端子将电气分离,并且接触线电压绝不会直接施加到电池上。此外,使用 SiC MOSFET 可以获得具有高开关频率的出色效率。本文第一部分介绍了基本 TESS 模块的主要特性,第二部分针对 1.5 kV 直流线路的典型情况提出了一种尺寸确定方法,该方法表明了使用 TESS 增强电源的局限性。最后,介绍了基本模块原型的实验结果。
1. 请勿将电池丢入火中。电池可能会爆炸。 2. 请勿打开或损坏电池。泄漏的电解液可能对皮肤和眼睛有害。它可能有毒。 3. 电池可能存在因高短路电流而导致的触电和烧伤风险。 4. 故障电池的温度可能会超过接触表面的阈值。在操作电池时应遵守以下预防措施:a) 在连接或断开电池端子之前,请断开电源和负载;b) 不要佩戴任何金属物品,包括手表和戒指;c) 使用带有绝缘手柄的工具;d) 不要将工具或金属部件放在电池上;e) 穿戴个人防护设备。f) 确保电池接地良好。接触接地不良或未接地的电池的任何部分都可能导致因高短路电流而导致的触电和烧伤。如果在安装和维护过程中由熟练人员移除导电环境,则可以降低此类危险的风险。电池完全放电或过度放电保护模式激活后,应在 12 小时内充电。不遵守此说明将损坏电池,并且不在保修范围内。