电化学阻抗光谱(EIS)是锂离子电池健康诊断状态的有效技术,预计通过电池充电曲线预测阻抗光谱频谱预测有望在车辆操作过程中实现电池阻抗测试。然而,充电曲线和阻抗光谱之间的机械关系尚不清楚,这阻碍了基于EIS的预测技术的发展和优化。在本文中,我们通过电池充电电压曲线预测了阻抗光谱,并根据电化学机械分析和机器学习优化了输入。探索了充电曲线,增量容量曲线和阻抗频谱之间的内部电化学关系,从而改善了该预测的物理解释性,并有助于定义机器学习模型输入的适当部分电压范围。基于序列到序列的预测,已经采用了不同的机器学习算法来对所提出的框架进行验证。此外,评估了具有不同部分电压范围的不同部分电压范围的预测,并评估了不同的训练数据比,以证明所提出的方法具有较高的概括和鲁棒性。实验结果表明,适当的部分电压范围具有很高的精度,并且会收敛到电化学分析的发现。通过对电池内电化学反应的冠状分析选择的适当部分电压范围的阻抗光谱的预测误差小于1.9 m o。由Elsevier B.V.和科学出版社出版。即使电压范围降低到3.65–3.75 V,大多数RMSE的预测仍然可靠。2023年科学出版社和达利安化学物理研究所,中国科学院。这是CC下的开放式访问文章(http://creati- vecommons.org/licenses/4.0/)。
镍镉系统使用与镍铁系统相同的正极和电解质,并结合金属镉负极。电池反应如表 10.1 所示,其标称开路电压为 1.3 V。从历史上看,电池的发展与镍铁的发展同步,性能相似。镍镉技术因具有高比功率(超过 220 W/kg)、长循环寿命(高达 2000 次循环)、高电气和机械滥用耐受性、宽放电电流范围内电压降小、快速充电能力(18 分钟内约 40% 至 80%)、宽工作温度范围(-40 至 85°C)、低自放电率(<0.5%/天)、由于腐蚀可忽略不计而具有出色的长期储存性能以及多种尺寸设计等优点而取得了巨大的技术进步。然而,镍镉电池也存在一些缺点,包括初始成本高、电池电压相对较低以及镉的致癌性和环境危害。镍镉电池通常可分为两大类,即通风型和密封型。通风型有许多替代品。通风烧结板是较新的发展,具有较高的比能,但价格较贵。它的特点是放电电压曲线平坦,大电流速率和低温性能优越。密封镍镉电池采用特定的电池设计特点,可防止过度充电期间因气体产生而导致电池内压力积聚。因此,该电池无需维护。EV 和 HEV 配置的镍镉电池的主要制造商是 SAFT 和 VARTA。最近采用镍镉电池供电的电动汽车包括克莱斯勒 TE Van、雪铁龙 AX、马自达 Roadster、三菱 EV、标致 106 和雷诺 Clio。
锂离子电池的热失控可能涉及各种类型的故障机制,每种机制都有其独特的特征。使用分数热失控量热法和高速射线照相术,对三种不同几何形状的圆柱形电池(18650、21700 和 D 型电池)对不同滥用机制(热滥用、内部短路和钉子刺穿)的响应进行了量化和统计检查。确定了电池几何形状与其热行为之间的相关性,例如在钉子刺穿过程中,随着电池直径的增加,电池每安培小时的热量输出(kJ Ah − 1 )会增加。高速射线照相术显示,与热滥用或内部短路滥用相比,钉子刺穿时电池内的热失控传播速率通常最高,其中随着直径的增加,传播速率相对增加。对于在相同条件下测试的特定电池模型,观察到热量输出分布,随着质量喷射的增加,热量输出呈增加的趋势。最后,使用嵌入在穿透钉中的热电偶进行内部温度测量被证明是不可靠的,因此表明在温度快速变化的情况下使用热电偶时需要小心。本文中使用的所有数据均通过 NREL 和 NASA 电池故障数据库开放获取。© 2022 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/ by/4.0/ ),允许在任何媒体中不受限制地重复使用作品,前提是正确引用原始作品。[DOI:10.1149/ 1945-7111/ac4fef ]
Zeon Trading(上海)有限公司(总部:中国上海;董事长:Hidenori Yukishige),他是Zeon Corporation的全体子公司(Zeon; Zeon;总部:Chiyoda-Ku,Tokyo,Tokyo; Tokyo; Tokyo; Tokyo;总裁;总裁兼首席执行官:Tetsuya Toyoshima),与Z的材料相关,CONED CONY CHEY CHEY cony geny chuhundy chuhuh geny con they geny chuhuh geny geny geny geny geny con。 (Chenyu;总部:中国Zhuhai;主席:Li Xiaohua),上海能源新材料技术公司有限公司的会员(Semcorp;总部;中国上海;中国上海;董事长:Paul Xiaoming Lee),为Anode Venture Binders in Lithioum-ion-In-In-In-In-In-In-In-In-ion cattries建立了联合销售企业。联合销售合资企业定于2025年4月底成立。联合销售合资企业将在Zeon授予的Chenyu制造的Chenyu制造的中国国内产品中拥有独家销售权,其中包括用于锂离子电池中使用的阳极粘合剂的制造技术和知识产权。该合作伙伴关系的目标是通过利用Semcorp的销售渠道进一步扩展中国国内市场的阳极粘合剂业务,Semcorp的销售渠道拥有中国的分离器*市场的第一份额,并整合了Zeon多年来与Chenyu竞争性的制造成本一起培养的阳极粘合剂技术。Zeon将通过扩展其含锂离子电池的阳极粘合剂业务为人们提供可持续的地球和安全和舒适的生活,这是其在2030年中期业务计划中指定的现有业务之一。* m斑膜膜,由树脂制成,用于将电池内的阴极和阳极分开。联合销售合资企业的轮廓
2020年8月21日收到;以修订的表格收到2020年10月27日; 2020年10月30日接受;自锂离子电池发明以来,在线在线摘要,充电策略已获得了多年来的认可和研究。在本文中,在各种操作和充电载荷期间,通过三种广泛使用的工具监视了带有锂聚合物电池的笔记本电脑。获得了几个钥匙值,以评估电池周期,充电百分比和排放深度之间的相关性。最终结果表明,应避免使用设备的大量放电和连续的操作,尽管高负载任务需要连接AC充电器。确保电池保持在安全温度和充电范围内可以延长细胞寿命和状态,并防止电池内部的锂沉积物。版权所有©2020国际能源与环境基金会 - 保留所有权利。关键字:锂;电池;细胞;国防部释放;周期;存款;笔记本电脑;容量;聚合物。1。简介锂离子电池是每种现代应用的强大产品。它们用于微电子,例如智能手机,笔记本电脑,相机,警报和电动汽车,基本上需要电池。由Akira Yoshino开发的,根据Goodenough的团队研究[1],它们很快就在储能中占主导地位。研究人员大规模尝试降低成本并使其安全性[2]之后,索尼公司发布了第一个大型商业产品,因为高可易燃性,氧化和低充电周期。它们由铜阳极和铝阴极(后来在氧化锂上)组成,用液体电解质分离。工作原理很简单,如图1。锂离子的运动在阳极中产生自由电子,因此在阳性收集器处产生电荷。然后电流将负载流到负电流收集器。分离器阻止电池内的电子流[3]。从那时起,它们的演变就巨大[4,5],测试不同的元素,以确保能量密度和成本节省[6]。2。锂聚合物电池即使锂离子电池足够,也需要提高电池寿命和能量密度将研究转向另一种形式的锂离子电池:锂聚合物或Li-Po电池。这种电池
提高对电池内化学反应的认识。基于光纤的传感器特别适合集成到电池中。[1,7,9–12] 光纤成本低,可以做得非常细,从而能够在电池的不同部位进行精确定位。它们对锂离子和钠离子电池中的恶劣环境也相对惰性,并且可以使用各种基于光谱的分析技术。[7] 通过电池内温度和应变的变化进行感测,间接影响改性光纤的光学特性,也已被证明。例如,Huang 等人将光纤布拉格光栅插入商用电池,通过温度和压力跟踪化学事件,[10] 而 Wang 等人采用等离子体光纤传感器监测水性锌空气电池中的电化学动力学。[11] Ghannoum 等人在许多论文中报道了使用光纤倏逝波 (FOEW) 光谱来表征电池。 [9,13] 例如,使用嵌入式光纤根据石墨的电致变色特性估算 SOC。 [14] 我们之前还使用过 FOEW 光谱来比较完全嵌入或放置在磷酸铁锂 (LFP) 正极表面的光纤的传感和电池性能。 在这些实验中,光纤传感区域的光调制也可能与 LFP 中铁的氧化和还原有关。 [15,16] 光纤在电池中的应用仍然处于相当低的技术准备水平,在商用电池中可能并非易事,但有可能为 BMS 提供重要信息,以优化电池组的使用。 总体而言,还必须提高对电池化学如何调节光纤/电池界面光的了解。锂离子电池最关键的安全问题之一是阳极形成锂枝晶的风险。[17–19] 这会导致电池短路,通常源于充电过程中锂离子嵌入速率不够时的锂沉积。金属锂沉积也是导致电池老化的一个重要因素[17],例如导致容量衰减速度加快。人们采用了各种各样的实验技术来分析和检测锂沉积。[17–19] 然而,这些技术中的大多数都基于大型、先进且昂贵的仪器,而这些仪器通常需要专门的实验电池或原型电池。其中一些技术也不是
由先进技术证明了干燥。满足基本起始需求的电池,这些电池需要在使用过程中加入脱矿水,这些电池需要维护。充满电解质(包括酸包装)时,电池会被激活。由于单独的酸包装,可以在使用之前将其存储长时间。AGM通过使用“吸收玻璃材料”,电解质在电池内以更固体形式吸收。结果,与等效的干型电池相比,它具有更高的(起始)容量。此外,该电池可以以一定的角度安装,并且由于其封闭的系统而不需要用水充值。充满电解质(包括合适的酸包)时,电池会被激活。因此,在使用之前,可以将其存储长时间。SLA此AGM电池是从生产过程中激活的,使其在购买后立即运行。除了定期充电外,无需进一步维护。该防漏电池可以以90°的角度安装。凝胶要归功于电解质加厚到纳米凝胶,该电池的自我电量较低。此外,该电池的构造提供了比等效的干/AGM或SLA电池更多的功率。这使其非常适合具有较高功耗的摩托车,例如ABS,ESP和其他电子配件的摩托车。HVT HVT电池具有特殊的电池外壳,能够承受高温。 它非常适合赛车或越野摩托车。HVT HVT电池具有特殊的电池外壳,能够承受高温。它非常适合赛车或越野摩托车。其明显更高(起动)的容量和极端的振动阻力(由于压缩AGM板封装)使其非常适合重型V-Twin摩托车。这些摩托车通常具有更高的压缩比和更多可用配件,比类似的SLA电池需要更多的功率。LFP LifePo4技术比铅酸电池具有多个重要优势,包括其轻巧(比铅酸电池轻2/3),较长的寿命(2000电荷周期),最小的自我放电,快速充电以及可以安装在任何位置的能力。
缩写:AADC,芳香族 L-氨基酸脱羧酶;AAV,腺相关病毒;ALS,肌萎缩侧索硬化症;APOE,载脂蛋白 E;ASO,反义寡核苷酸;ATXN2,共济失调蛋白 2;BBB,血脑屏障;BSCB,血脊髓屏障;CDKL5,细胞周期蛋白依赖性激酶样 5;CNS,中枢神经系统;CRISPR,成簇的规律间隔的短回文重复序列;CSF,脑脊液;DRPLA,齿状红核苍白球路易体萎缩;FTD,额颞痴呆;FUS,聚焦超声;FXTAS,脆性 X 相关震颤/共济失调综合征;GABA,γ-氨基丁酸;GAD,谷氨酸脱羧酶;GAG,糖胺聚糖; GAN,巨轴突性神经病;GBA,葡萄糖脑苷脂酶;GCH,三磷酸鸟苷环化水解酶;GDNF,胶质细胞源性神经营养因子;ICis,脑池内;ICV,脑室内;IPa,脑实质内;IT,鞘内(腰椎);IV,静脉内;LacNAc,硫酸化N-乙酰乳糖胺;MAO,单胺氧化酶;miRNA,微小RNA;MLD,异染性脑白质营养不良;MPS,粘多糖贮积症;MRgFUS,磁共振成像引导聚焦超声;MRI,磁共振成像;MSA,多系统萎缩;NCL,神经元蜡样脂褐素沉积症;NGF,神经生长因子;NTN,神经营养素;PDHD,丙酮酸脱氢酶缺乏症;Put,壳核; rAAV,重组腺相关病毒;RNAi,RNA 干扰;siRNA,短干扰 RNA,小干扰 RNA;SMA,脊髓性肌萎缩;SMARD,脊髓性肌萎缩伴呼吸窘迫;SNc,黑质致密部;SOD1,超氧化物歧化酶 1;Str,纹状体;TDP-43,TAR DNA 结合蛋白 43;TERT,端粒酶逆转录酶;TH,酪氨酸羟化酶;Th,丘脑;VTA,腹侧被盖区;ZFN,锌指核酸酶。 * 通讯作者:德克萨斯大学达拉斯分校,800 West Campbell Road, EW31, Richardson, TX 75080, USA。电子邮箱地址:Zhenpeng.Qin@utdallas.edu (Z. Qin)。
参考文献 1. Maertens, GN 等人 (2022) 逆转录病毒整合酶的结构和功能。《自然微生物学评论》20,20-34。 2. https://en.wikipedia.org/wiki/Alteplase 3. Ono, M. 等人 (1985) 叙利亚仓鼠体内 A 型颗粒基因的核苷酸序列:A 型颗粒基因与 B 型和 D 型肿瘤病毒基因的密切进化关系。《病毒学杂志》387-394。 4. Wurm, FM 等人 (1989) CHO 细胞中内源性逆转录病毒样 DNA 序列的存在和转录。在:动物细胞生物学和生物过程技术的进展。编辑 RE Spier、JB Griffiths、J. Ste- phenne 和 PJ Crooy,76-81,Butterworths。 5. Anderson, KP 等人(1990) CHO 细胞内池内 A 粒子相关序列的存在和转录。病毒学杂志 64 (5), 2021-2032。 6. Venter, JC 等人 (2001)。人类基因组序列。科学。291 (5507): 1304–1351。 7. Duroy, PO. 等人 (2019) 中国仓鼠卵巢细胞内源性逆转录病毒的表征和诱变以灭活颗粒释放。生物技术生物工程。DOI:10.1002/bit 27200 8. Li, S. 等人 (2019) 中国仓鼠的蛋白质组学注释揭示了大量新的翻译事件和内源性逆转录病毒元件。蛋白质组研究杂志,18(6), 2433–2455。 https://doi. org/10.1101/468181 9. Naville, M., Volff, J.-N. (2016) 鱼类基因组中的内源性逆转录病毒:从过去感染的遗迹到进化创新?微生物学前沿 doi:3389/fmicb.2016.01197 10. Löwer, R. 等人 (1996) 我们所有人体内的病毒:人类内源性逆转录病毒序列的特征和生物学意义。PNAS 93, 5177-5184 11. Patel, MR 等人 (2011) 古病毒学——过去病毒的幽灵和礼物。Curr. Opin.Virol. 1, 304-309 12. Reid, GG 等人(2002):用于生产生物制剂的小鼠和中国仓鼠细胞系中内源性逆转录病毒计数的电子显微镜技术比较。J. Virol. Meth. 108, 91-96 13. Stocking, C., Kozak, C. (2008) 小鼠内源性逆转录病毒。Cell.Mol. Life Sci. 65, 3383-3398 14. Wurm, FM (2013) CHO 准种 – 对制造工艺的影响。工艺 1,3, 296-311 15. Wurm, FM, Wurm, MJ (2017):CHO 细胞的克隆、生产力和遗传稳定性 – 讨论。工艺 2017, 5, 20, doi: 103390/pr5020020
在充电/放电过程中锂电池电极的结构和电子演化的研究对于了解LI的存储/释放机制至关重要,并优化了这些材料,以实现高性能和循环性。在过去的20年中,在过去的20年中,已经开发出了几种原位和现代技术,例如X射线衍射XRD,1-11 X射线吸收光谱XAS XAS,12-15和Mössbauer,Mössbauer,16 Raman,ir和NMR 17,18 Specopies已开发出来。对电池材料的原位评估,即在封闭的电化学电池内观察,带来在线信息,并消除了通过环境气氛操纵高反应性粉末的风险。它允许研究复杂的反应机制,并证明由于电极s内的结构和电子过渡而导致的各种化学系统中的电压 - 组合物非常令人满意。可以在标准实验室衍射仪和同步加速器源设备中进行原位XRD研究,该设施可提供比常规X射线管所输送的光子量高几个数量级的X射线光束。到此为止,已经设计了几种用于转移或传输几何形状的电化学细胞。在标准X射线衍射仪中,高质量位置敏感探测器的最新开发使得在实验室中更容易使用此类技术。使用带状结构计算和数据模拟的最新方法在允许对电化学锂插入/提取过程中的化学键进行精确分析方面非常成功。在要研究的材料方面非常普遍,最近在伸展的X射线吸收膜结构Exafs和X射线吸收接近边缘结构Xanes Xanes Xanes模式中,最近在延伸的X射线吸收膜结构中广泛执行了原位XAS的结构变化和电子传递现象。例如,尽管信号的EXAFS部分提供了有关其自身吸收原子选择的近距离环境的直接结构信息,但可以将光谱的XANES部分大致看作是给定原子的空电子状态的图片,并允许在静脉内和反流中监测这些水平的收费过程。19此外,同步设施中弯曲的单晶的开发和使用分散X射线吸收结构以及单色QuickXAS快速旋转的可能性为研究的新方法铺平了道路,以研究对电池材料的研究。使用非常短的收购时间的可能性,通常是XRD和XAS几秒钟的顺序,确实允许我们投资 -