摘要本文实验研究了与最大基数匹配问题的实例相遇时,通过D波商业化的模拟量子计算机的行为,这些问题被专门设计为难以通过模拟退火而解决。我们在各种尺寸的情况下基准一个D-Wave“华盛顿”(2倍),具有1098个操作码头,并观察到,除了其中最琐碎的最小的所有情况外,它都无法获得最佳的解决方案。因此,我们的结果表明,量子退火至少在D-Wave设备中实现,与类似的退火相同的陷阱,因此提供了其他证据,表明存在多项式的问题,即这种机器无法有效地求解最佳性。此外,我们研究了Qubits互连拓扑的程度,以解释后一种实验结果。特别是我们提供的证据表明,这些拓扑的稀疏性会导致人为膨胀大小的QUBO问题,可以部分解释上述令人失望的观察结果。因此,本文暗示,要释放量子退火方法的潜力,必须使用密度的互连拓扑。
探地雷达 (GPR) 是一种成像系统,可用于观察现场地下情况,以研究土壤的层组成或埋藏物体的存在。由于地面的电磁特性,此类图像通常具有非常低的信噪比 (SNR)。此外,根据设计,埋藏物体被观察为双曲线,其形状可能与物体类型(例如空腔或管道)相关联。在这种情况下,埋藏物体的分类在民用应用中非常重要,例如恢复埋藏天然气管道的位置 [1] 或军事应用,例如地雷探测 [2]。为了进行这种识别,一些研究考虑使用信号反演技术 [3] 来提高 SNR,以便地球物理学家进行手动解释。当需要处理大量图像时,这种解决方案可能不切实际,因为它需要专门的人力资源。因此,自动识别方法已成为必需,并受到社区的关注。GPR 信号的自动分类分两步进行。首先,感兴趣区域(ROI)对应于
摘要:人类肽酶失调与癌症,高血压和神经变性等多种疾病有关。病毒蛋白酶的一部分对于病原体的成熟和组装至关重要。几十年的研究致力于探索这些宝贵的治疗靶标,通常用基于合成底物的抑制剂来解决它们,以阐明其生物学作用并开发药物。基于肽的抑制剂的合理设计为获得各种研究工具和候选药物提供了快速的途径。非共价修饰符在历史上是由于其可逆酶结合模式而导致的蛋白酶抑制作用的首选,因此可能更安全。然而,近年来,共价性不可逆抑制剂正在复活,其相关出版物,临床前和临床试验以及FDA批准的药物的急剧增加。取决于上下文,共价修饰符可以提供更有效和选择性的候选药物,因此需要较低剂量,从而限制了脱靶效应。此外,这种分子似乎更适合解决癌症和耐药性耐药性的关键问题。在可逆性和不可逆的抑制剂的边界,新药类别是基于共价肽的抑制剂,随着FDA在2003年获得FDA的批准,迄今为止又有4个其他4个列表。该领域的亮点是第一种口服Covid-19药物Nirmatrelvir的快速发展。1。简介共价可逆抑制剂理论上可以提供可逆修饰符的安全性,并结合其不可逆转的对应物的高效力和特异性。在此,我们将介绍基于共价可逆的基于肽的抑制剂的主要群体,重点是其设计,合成和成功的药物开发计划。
由于一维线性通道的扩散限制,纳米沸石的合成和催化应用已被证明是提高各种扩散限制烃转化性能的有效策略 [7,8]。由于废物消耗和污染,工业的增长对全球环境构成了严重威胁。应做出更多努力来减少环境污染。解决这一重大问题的有效方法之一是光催化 [9]。尽管许多类型的材料被用于催化,如硫属化物、金属氧化物和钙钛矿 [10,11]。沸石的多孔笼状结构有许多应用,包括气体检测和清洁 [12,13]。沸石可以通过多种方法成功合成,例如盐化、密闭空间合成和微波合成法 [14,15]。已经报道了用微波法制备的纳米级林德 L 型沸石。由于这些金属氧化物和钙钛矿的稳定性较差,研究人员发现沸石是光催化的主要候选材料,因为它的二次氢解程度较低,在正辛烷芳构化中对 C-8 芳烃的选择性较高 [16]。然而,微波合成法被认为耗能,不适合工业应用和技术催化 [17]。因此,开发一种经济高效、易于扩大规模的方法来制备具有改进催化性能的纳米级林德 L 型沸石是极其必要的。幸运的是,一些研究人员观察到加入少量钡可以促进纳米级林德 L 型沸石的形成 [18]。据我们所知,Ba 对林德 L 型结晶过程的影响的解释仍不清楚。全面了解形成过程对于更科学地调节沸石晶体尺寸也具有重要意义。此外,林德 L 型沸石晶体尺寸对正构烷烃芳构化的影响还需要进一步系统研究。Bernard 等人首次报道了非酸性 0.71 nm 一维 12 元环通道的林德 L 型沸石在负载铂的情况下表现出优异的烷烃芳构化性能。通过水热法成功合成了纳米尺寸的林德 L 型沸石[19,20]。林德 L 型沸石具有六方晶体结构(空间群 P-6/mmm),晶胞常数 a = b = 18.4 和 c = 7.5 [21,22]。林德 L 型沸石在过去 20 年中引起了广泛关注
电池是一种广泛使用且简单的方法,可以为电子设备供电,尤其是鉴于个人前往所有小工具的流行率。电动汽车和便携式电子设备的采用不断升级导致对锂离子电池的需求激增。因此,这引起了人们在获取基本矿物质(例如锂和钴)的不确定性以及对正确处置死电池的担忧时的不确定性。现有的电池回收方法基于电池的个别化学作用显示出变化,从而影响成本因素和温室气体排放。同时,有可能将耗尽的电池重新利用用于低层储能应用。缺乏与废物流的安全存储和处理有关的立法,这有助于在裸露的环境中积累垃圾,并从垃圾填埋场中释放危险物质。此外,当代电池制造方法需要利用创新的物质,例如用于阴极的电解质和纳米结构的离子液体,以增强电池的能量特性和寿命。关于与新型电池化学物质相关的环境后果的准确评估的不确定性存在可能阻碍旨在回收和遏制的努力。该分析的目的是巩固有关电池污染物的现有知识,包括那些被认可的人和不确定的污染物,并评估其潜在的环境影响。此外,该研究旨在研究循环经济中电池回收的当前策略和方法。
整合可再生能源和储能系统提供了一种更节能、更稳定地运行电网系统的方法。热存储和电池是最常见的集成设备。然而,目前尚不清楚哪种集成存储系统在整体经济性方面表现更好。冰蓄冷的初始成本和维护成本较低,但存储充电效率较低,并且只能转移与建筑物冷却要求相关的电力负荷。相反,电池的往返效率相当稳定,电池可用于转移暖通空调和非暖通空调负荷。然而,电池的初始成本较高,寿命较短。本研究提出了一种使用模型预测控制和最佳尺寸的工具,并提供了一个案例研究,用于比较具有冷却冷却器和现场光伏系统的商业建筑的电池和冰蓄冷系统的生命周期经济性。
一项对全球电力公司的分析20得出结论,煤炭和天然气 (NG) 燃料的碳锁定将在未来几十年嵌入能源系统,从而导致电力行业出现显著的惯性。FF 行业目前正将商业计划重点放在蓝氢上21,将 FF 利益扩展到不断发展的氢能行业。22 虽然这种重点可能会在全球能源行业转型期间最大限度地减少供应中断,但使用煤炭和天然气燃料可能会使蓝氢的碳锁定风险更高。最近一项基于 20 年甲烷全球变暖潜能值 (GWP) 的分析23 表明,在所分析的特定情景下,来自 NG 的蓝氢对气候的影响可能大于直接燃烧 NG。更重要的是,其他分析 17,24 – 26 得出结论,从 FF 中获得的氢气具有很高的经济风险,这将对蓝氢生产的增长造成下行压力。全球能源系统模型得出的结论是,FF 产量需要每年减少 3% 才能将温度升幅限制在 1.5 摄氏度以下,同时需要保持近 60% 的天然气和 90% 的煤炭不被开采。27
