摘要:由于快速的城市化和工业化,空气污染已成为全球问题。不良的空气质量是欧洲最重要的环境健康风险,导致严重的健康问题。外部空气污染不是唯一的问题;内部空气污染同样严重,也可能导致不利的健康结果。物联网是一种用于监视和发布实时空气质量信息的实用方法。已经提出了使用微传感器进行数据收集的许多基于物联网的空气质量监测系统。这些系统专为室外空气质量监测而设计。他们使用传感器测量空气质量参数,例如CO 2,CO,PM 10,NO 2,温度和湿度。数据是通过放置在电动汽车上的一组传感器来获取的。然后将它们发送到服务器。用户可以订阅列表并接收有关本地污染的信息。该系统允许实时局部空气质量监控并将数据发送给客户。工作还提供了安全的数据传输协议,以确保系统安全。该协议提供了全系统攻击的弹性和截距,这是现有解决方案所不提供的。
由于环境中自然产生的过高分贝水平和致命化学物质,大城市的空气和污染现在已成为需要特别关注的日常重要问题。因此,为了确保健康的生活方式和更美好的未来,目前重要的是限制污染(包括空气和噪音)。在本研究中,物联网的良好实施用于监测空气污染和噪音污染等环境因素。由于地球上存在的高分贝和有害气体直接影响人类福祉,因此需要异常关注,大都市地区的空气和污染问题现在每天都在发生。这样,它终于曝光了。在这项工作中,物联网的强大应用用于感知空气质量状况,包括噪音和污染。本文说明了一种灵活、灵活且经济高效的应用设计,用于评估所选网站的空气和声音质量。该框架提出了一个与噪音和空气质量相关的感知框架,使我们能够使用物联网监测和评估特定区域的实时声音和空气质量。框架利用空气传感器测量周围可见的危险气体混合物的距离,并频繁传递此信息。关键词:物联网 (IoT)、传感器、Arduino、雨水检测系统
摘要:上个世纪的主要关注点之一是空气污染及其对人类健康的影响。其影响在城市和城区尤为明显,政府正试图减轻其影响。尽管已经提出了不同的解决方案,但公民仍在报告他们所居住地区的恶劣状况。本文提出了一种解决方案,通过结合用户反馈/报告和通过专用移动物联网传感器获取的实时数据来支持政府监测城市污染,这些传感器由政府官员动态重新定位,以验证特定区域的报告状况。移动设备利用专用传感器监测空气质量,并通过机器学习技术捕捉主要道路的交通状况。该系统公开了一个移动应用程序和一个网站,以支持收集公民报告并向机构和最终用户显示收集的数据。所提解决方案的概念验证已在一所中型大学校园中进行了原型设计。性能和功能验证都证明了该系统的可行性和有效性,并允许确定一些经验教训以及未来的工作。
过程传感技术 (PST) 提供无与伦比的仪器、分析仪和传感器套件,用于要求严格的终端市场的精密测量和监控。这些市场包括制药/生命科学、特种气体、半导体、石油和天然气、石化产品和电力、气体检测、食品和饮料以及楼宇自动化。使用我们的产品,客户每年可节省数百万美元,因为其工艺中提高了能源效率,减少了工艺中断。食品、药品、半导体和数千种制成品的质量取决于在生产、储存和运输过程中对湿度、氧气、CO、N 2 、H 2 、碳氢化合物、压力或 CO 2 等关键参数的可靠测量。我们的产品直接提高了客户的盈利能力,并帮助他们遵守严格的行业法规。我们拥有并制造大多数产品中使用的传感技术。这使我们能够保持强大的领导地位,并将我们的创新优势传递给我们的客户。
过程传感技术 (PST) 提供无与伦比的仪器、分析仪和传感器套件,用于要求严苛的终端市场的精密测量和监控。这些市场涵盖制药/生命科学、特种气体、半导体、石油和天然气、石化产品和电力、气体检测、食品和饮料以及楼宇自动化。使用我们的产品,客户每年可通过提高其工艺中的能源效率和减少工艺中断节省数百万美元。食品、药品、半导体和数千种制成品的质量取决于在生产、储存和运输过程中对湿度、氧气、CO、N 2 、H 2 、碳氢化合物、压力或 CO 2 等关键参数的可靠测量。我们的产品直接提高了客户的盈利能力,并帮助他们遵守严格的行业法规。我们拥有并制造大多数产品中使用的传感技术。这使我们能够保持强大的领导地位,并将我们的创新利益传递给我们的客户。
背景UNEP研究表明,空气污染是死亡率的第五领先危险因素。空气污染估计是2017年亚太地区约340万人死亡的原因。尽管国家和城市已经实施了各种空气污染管理政策,但这些政策只会抵消人口不断增长和城市化所产生的额外污染2。在1990年至2015年之间,亚太地区3的人口加权PM 2.5浓度增长了19%,超过了全球平均增长10%。在2018年,亚太地区是最受污染的100个城市中的96个所在地(PM2.5)4。在至少发达国家中暴露于颗粒物污染的趋势往往更大,而对流层臭氧浓度在更发达或迅速发展的国家和地区(例如南亚)中增长快,在南亚,O3污染的增长速度比全球增长率快得多。5空气质量监测主要基于政府使用其领土内的基于地面的空气质量监测网络的原位测量。但是,基于地面的监视有局限性,因为监测站主要集中在人口稠密的城市,这些城市具有刚性安装要求和非常狭窄的空间覆盖范围。卫星观测通过在更广泛的区域提供数据来补充地面网络,这对于没有安装地面监视器的地区特别有用,例如农村地区或空气污染监测设备或容量有限的国家。此卫星信息有助于评估和改善空气质量和化学运输模型,从更广泛的角度来看,并允许更好地生产每小时的空气污染预测,通过广泛的平台和应用程序可以访问公众。从长远来看,可以监控政策干预的有效性。对于短期,可以识别和解决因排放库存或地面监测站而错过的污染热点。此数据可以填补通过监测站收集的地面数据留下的信息空白,以帮助基于证据的政策制定,不仅解决国家和地方空气质量,而且解决跨界污染问题。
空气污染是不容忽视的环境问题之一。工业增长和城市化导致许多地区的空气污染物浓度升高。这些污染物会对人类健康和其他生物造成损害。现有的污染物排放监测系统,如 Opsis、Codel、Urac 和 TAS-Air 指标通常很昂贵。此外,由于其工作原理,这些系统在烟囱上安装有限制。这导致工厂周围的其他区域不受监控,从而导致健康问题。本文提出了一种基于无线传感器网络 (WSN) 技术的工业空气污染监测系统。该系统与全球移动通信系统 (GSM) 集成,其使用的通信协议是 zigbee。该系统由传感器节点、控制中心和数据库组成,通过数据库可以存储传感数据,用于历史和未来规划。所提出的系统可以部署到工业中,用于监测工艺过程中工业排放产生的一氧化碳 (CO)、二氧化硫 (SO 2 ) 和粉尘浓度。
成本/效益考虑 当石油污染监测基于星载和机载操作相结合时,成本效益比和成本效益已被证明会提高。 我们考虑使用一架飞机、两架飞机以及 ERS SAR 数据(覆盖 840 万平方公里)和一架飞机(960 万平方公里)的组合来监测北海每年 1800 万平方公里区域的石油泄漏。 配备 SLAR 的飞机在标准条件下每小时可以监测大约 15 000 平方公里。 当地天气条件允许每周平均覆盖四天,每天大约飞行四个小时,每天的覆盖范围约为 60 000 平方公里。 评估中考虑了成本、时间范围(设定为二十年)以及社会影响。计算了所有涉及的服务提供商、最终用户、潜在污染者(例如石油公司、航运、沿海工业)群体的社会成本和收益。