图 1. 本研究中提出的工作方案:使用改进的 Hummers 方法 [40, 52] 对石墨进行氧化和剥离,然后通过可持续热液还原法以水为溶剂进行还原以生成 rGO。合成后干燥方法可以控制 rGO 微粒的最终表面积和孔结构。将电催化剂流动沉积在碳毡电极上,并应用于 VRFB 单电池中以评估其对电化学性能的影响。
本发明将薄膜和基底之间存在错配应变时材料行为的变化关联起来。为了量化目的,发明人对沉积在厚蓝宝石/硅基底上的氮化镓 (GaN) 薄膜进行了纳米压痕数值实验,以评估薄膜中的负载与变形。这对于电子工业和 MEMS、NEMS、LED 等设备非常重要,因为变形的微小变化会影响这些设备的性能。印度专利
摘要:今天,由于电导率高,石墨烯装载的纺织品被认为是有希望的智能服装。在这项研究中,我们报告了使用一步的气溶胶喷雾热解(ASP)工艺及其在智能纺织品上的潜在应用,该研究降低了用石墨烯(GO)胶体溶液(GO)制造的纯棉织物(R-GO)。ASP过程是有利的,因为它易于实现,并且可以应用于连续处理。更多,此过程从未应用于将R-GO沉积在纯棉布上。田间发射 - 扫描显微镜(Fe-SEM)观察,傅立叶变换红外(FT-IR)分析,拉曼光谱,X射线衍射(XRD)分析(XRD)分析和紫外线透射率(UVT)用于评估R-Go胶体的材料特性。还测量了电阻以评估样品的电导率。结果表明,R-GO被用在样品上迅速降低,并且具有最高电导率的样品显示出2.27kΩ /sq的电阻值。综上所述,结果表明,ASP方法表现出高电位,可有效沉积R-GO在棉布织物标本上,并且是开发基于导电棉的智能服装的前景。因此,这项研究也有意义,因为可以通过将R-GO沉积在纯棉织物上,因此可以新应用ASP工艺。
z , Jinbao Lyu is , Jong-Lyel Roh bb , Enyong Dai cc , Gabbor Juhasz dd,ee , Wei Leu's , Jai' Piacentini mm,n , Wen-Xing Ding' Zhivotovsky xx,yy,ys , Sébastein Besteiro horror , Dmitry I. Gabrilovich bbb , Do-Hyung Kim CCC,Valerian E. Kagan DDD,HülyaBayiree,Guang-Cho Chen FF,Skot Ayton Ggg',Masaki Comatsu,Stefan Krautwadd JJJ Michael Thumm,Martin Campmann vv,Martin Campmann VV, BBBB,Helbert J. Zeccc Guido Croemer’
摘要 混合增材制造 (Hybrid-AM) 描述了多操作或多功能的增材制造系统。在工业中,混合增材制造的应用趋势日益增长,这带来了改进制造新零件或混合零件的新方法的挑战。混合增材制造无需任何组装操作即可生产功能齐全的组件。在本研究中,混合增材制造系统意味着要设计一个物体,该物体部分由预制或现成的零件制成,并通过电弧增材制造 (WAAM) 工艺添加。为此,设计并构建了一个使用脉冲 TIG-Wire-Arc 技术的混合增材制造原型系统。构建的成型金属沉积 (SMD) 系统在 x、y 和 z 轴上有三个驱动器和一个额外的旋转驱动器(第四轴)。使用混合增材制造机器,可以将线状材料沉积在现有的原始轮廓上,即棒、管、轮廓或任何 3D 表面上,从而缩短生产时间。通过这种方式,可以将螺旋形特征或扭曲的叶片形状添加到圆柱形零件上。在本研究中,使用开发的混合 AM 原型机将不锈钢螺旋桨叶片沉积在管道上。使用非平面刀具路径沉积后续层,并使用 4 轴 CNC 加工完成螺旋桨叶片的表面。
摘要我们报告了单原子镍催化剂在难治性等离子硝酸钛(TIN)纳米材料上使用湿合成方法在可见光光照射下支持的沉积。锡纳米颗粒有效吸收可见光,以产生光激发的电子和孔。光激发电子减少镍前体,以将Ni原子沉积在锡纳米颗粒表面上。产生的热孔被甲醇清除。我们通过改变光强度,光照时间和金属前体浓度来研究锡纳米颗粒上的NI沉积。这些研究结合了光沉积法是由热电子驱动的,并帮助我们找到了单个原子沉积的最佳合成条件。我们使用高角度的环形暗场扫描透射电子显微镜(HAADF-STEM),能量分散X射线光谱(EDX)和X射线光电子光谱(XPS)表征了纳米催化剂。我们使用密度功能理论(DFT)计算来预测Ni原子在TIN上的有利沉积位点和聚集能。TIN的表面缺陷位点最有利于单镍原子沉积。有趣的是,锡天然表面氧化物层上的氧位点也与单个Ni原子表现出很强的结合。等离子体增强的合成方法可以促进单个原子催化剂的光沉积在具有质量特性的广泛金属载体上。
摘要:加速器驱动次临界系统(ADS)是第四代核能系统的最佳候选之一,它不仅可以生产清洁能源,还可以焚烧核废料。ADS的瞬态特性和运行原理与临界核能系统(CNES)有显著不同。本文利用自主开发的中子学和热工水力学耦合程序ARTAP对ADS的安全特性进行了分析,并与CNES进行了比较。在ADS和CNES中都模拟了三种典型事故,包括反应性插入、流量损失和热沉损失。比较结果表明,在反应性插入事故中,CNES反应堆的功率以及燃料、包壳和冷却剂的温度均远高于ADS反应堆,这意味着ADS比CNES具有更好的安全优势。但由于ADS堆芯处于亚临界状态,对负反应性反馈的敏感性较低,模拟结果表明失流事故下CNES的固有安全特性优于ADS,事故发生后ADS的保护系统能迅速启动,实现紧急停堆;对于热沉损失事故,研究发现ADS和CNES反应堆包壳的峰值温度均低于安全极限,这意味着这两座反应堆在失流事故中具有良好的安全性能。
氮(N)的可用性限制了许多森林生态系统的主要生产率,尤其是北方和温带地区的生态系统(Lebauer and Treseder,2008; Du等,2020a)。可用的n来自通过土壤N矿化和叶子N吸收的内部循环,以及通过生物膜固化,大气N沉积和基岩风化的外部输入(Cleveland等,2013; Du and de Vries,2018; Morford et ef and。作为外部N输入,N沉积刺激植物的生长,从而增加许多陆地生态系统的C固结,尤其是在一个持续存在大气CO 2浓度的世界中(De Vries等,2014; O''Sullivan et al。自从工业革命伴随着人为n排放和沉积的工业革命以来,全球n个周期已被Human活动发生了巨大变化(Galloway等,2008,2021)。已经发现大量N排放会导致严重的空气污染(例如雾霾,酸雨和臭氧),并导致负面的生态影响(例如生物多样性丧失,酸性,酸性),当时是在各种生态系统中沉积到各种生态系统中,两者都在当前的热点地区,主要发生在East and South Asia和South Aseborions和北方地区,欧洲;等人,2010年;这些负面影响引起了从1980年代,1990年代的美国和2010年代的中国遏制欧洲国家排放的政策(Amann等,2013; Li等,2017; Zheng等,2018)。因此,n沉积在
1.Braciale, T., Sun, J.& Kim, T. 调节对呼吸道病毒感染的适应性免疫反应。Nat Rev Immunol 12, 295–305 (2012)。https://doi.org/10.1038/nri3166 2.ROBIN A W; ANTHONY J M. 传染病出现的社会和环境风险因素[J]。Nat Med, 2004,10(12): S70-S76。DOI:10.1038/nm1150。3.Falzarano, D., de Wit, E., Martellaro, C. 等。干扰素-α2b和利巴韦林联合抑制新型β冠状病毒复制。Sci Rep 3, 1686 (2013)。https://doi.org/10.1038/srep01686 4.熊成龙,蒋璐芳,吴。β冠状病毒(β-CoVs)引起的人类疾病的流行与控制[J]。上海预防医学杂志,2020,32(1)。DOI: 10.19428/j.cnki.sjpm.2020.20001。(中文) 5.周平,杨鑫,王鑫等。一种可能源自蝙蝠的新型冠状病毒引起的肺炎爆发。Nature 579, 270–273 (2020)。https://doi.org/10.1038/s41586-020-2012-7 6.欧鑫,刘燕,雷鑫等。SARS-CoV-2 刺突糖蛋白在病毒进入时的表征及其与 SARS-CoV 的免疫交叉反应。Nat Commun 11, 1620 (2020)。https://doi.org/10.1038/s41467-020-15562-9
* 通讯作者:陈洪生、李世龙、钱浩良,浙江大学信息与电子工程学院量子信息交叉学科中心、现代光学仪器国家重点实验室,杭州 310027,浙江大学;浙江大学-杭州全球科技创新中心、浙江省先进微纳电子器件与智能系统重点实验室,杭州 310027,浙江大学;浙江大学 ZJU-UIUC 学院国际联合创新中心,海宁 314400,浙江大学,电子邮箱:hansomchen@zju.edu.cn (H. Chen)、shilong.li@zju.edu.cn (S. Li)、haoliangqian@zju.edu.cn (H. Qian)。https://orcid.org/0000-0002-5735-9781 (H. Chen)。 https://orcid.org/0000-0003-4200-9479 (H. Qian) 王海腾、牛俊如、陈巧璐、邵华和杨逸浩,浙江大学信息与电子工程学院现代光学仪器国家重点实验室量子信息交叉学科中心,杭州 310027,中国;浙江大学-杭州全球科技创新中心、浙江省先进微纳电子器件与智能系统重点实验室,杭州 310027,中国;浙江大学 ZJU-UIUC 学院国际联合创新中心,海宁 314400,中国 赵思涵,浙江大学物理学院量子信息交叉学科中心、硅与先进半导体材料国家重点实验室、浙江省量子技术与器件重点实验室,杭州 310058,中国。 https://orcid.org/0000-0003-2162-734X