本手册为各州、印第安部落和其他授权管辖区提供技术指导,以根据《清洁水法》(CWA)制定水质标准和标准,保护水生生物免受营养物过度富集的急性和慢性影响。根据 CWA,各州和印第安部落应制定水质标准以保护指定用途。各州和印第安部落决策者有权酌情根据具体情况采用与本指南不同的方法,只要适当且科学合理。虽然本手册构成了 EPA 关于保护资源质量和水生生物的环境营养物浓度的科学建议,但它不能替代 CWA 或 EPA 的规定;它本身也不是一项法规。因此,它不能对 EPA、各州、印第安部落或受监管社区施加具有法律约束力的要求,并且可能不适用于特定情况或环境。EPA 将来可能会更改此指导。
在本研究中,研究人员从渤海河口沉积物中开发出一种富集培养物,发现菌株W不仅能在高盐度条件下(5.1%NaCl)生存,而且能够茁壮成长,将有毒的1,2-二氯乙烷分解成无害的乙烯。
图 2-8 蒂拉穆克湾 (Tillamook Bay) 的历史水深表面....................................................... 2-32 图 2-9 1996 年洪水的航拍照片.............................................................................. 2-38 图 4-1 调查水生栖息地的溪流......................................................................................... 4-4 图 4-2 ODFW 核心区域和 AFS 水生多样性区域....................................................... 4-5 图 4-3 大型木材招募潜力.................................................................................... 4-6 图 4-4 健康与不健康的河岸状况.................................................................................... 4-18 图 4-5 砾石质量和可用性.................................................................................... 4-22 图 4-6 大型木材.................................................................................................... 4-23 图 4-7 水池面积和频率............................................................................................. 4-24 图 4-8 湿地............................................................................................................. 4-30 图 4-9 流量恢复潜力................................................................................ 4-42 图 4-10 潮汐闸门改造潜力,改善栖息地和水质.................................... 4-58 图 4-11 河口分区图........................................................................................ 4-62 图 6-1 潜在的河道内栖息地改善地点............................
图 1。用于在 GIS 中表示底栖栖息地特征的矢量数据模型示例图 2。用于在 GIS 中表示底栖栖息地特征的栅格数据模型示例图 3。栖息地规模、传感器分辨率、分析/可视化技术与底栖栖息地测绘资金之间的关系图 4。传感器的相对尺度和底栖栖息地测绘分析图 5。多波束测深数据显示数据分辨率对在不同空间尺度上可视化底栖栖息地的影响图 6。底栖栖息地数据的数据显示、数据分析和数据集成之间的差异示例图 7。显示了显示和分析测深数据的不同技术的图表。转换为栅格 (b) 的水深点数据 (a) 可以查询以获取其他数据,例如深度轮廓 (c) 图 8。图示说明从侧扫声纳马赛克中划定地质基质,随后使用更高分辨率的 SPI 样本划定子栖息地 图 9。侧扫和多波束声纳数据的比较显示数据连续性的差异 图 10。Kostylev 等人的底栖栖息地测绘示例。2001 图 11。不同点插值技术的比较 图 12。使用平面视图摄影进行鳗草监测的示例数据收集和分析方法。
海底环境的测绘和地理空间分析是一项多学科任务,近年来由于技术的进步和调查系统成本的降低,这项任务变得更加容易完成。海底物理、生物和化学成分之间存在着复杂的关系,需要先进的综合分析技术,以使科学家和其他人能够直观地看到模式,并由此推断出海底过程。有效的海洋栖息地测绘、分析和可视化尤为重要,因为潮下海底环境不易用肉眼直接观察。因此,海底环境研究严重依赖遥感技术来收集有效数据。由于许多底栖科学家不是测绘专业人士,他们可能没有充分考虑数据收集、数据分析和数据可视化之间的联系。项目通常从明确的目标开始,但可能会受到从收集到分析和呈现的整个过程中保持数据质量所需的技术细节和技能的阻碍。缺乏对整个数据处理过程的技术理解可能会成为成功的重大障碍。虽然许多底栖生物测绘工作已经详细说明了与项目总体科学目标相关的方法,但只有少数已发表的论文和报告关注分析和可视化部分(Paton
摘要:人们一致认为温度在影响微生物活动方面起着重要作用,但在不同环境条件下温度如何影响浮游细菌碳代谢的不同方面仍存在疑问。我们研究了浮游细菌碳代谢的温度依赖性,这种温度依赖性是否会在不同温度下发生变化,以及温度和碳代谢之间的关系是否因富集程度不同的河口子系统而异。在温带河口(美国切萨皮克湾莫尼湾)进行的两年密集采样表明,细菌生产(BP)和呼吸(BR)的温度依赖性存在显著差异,这导致细菌生长效率(BGE)对温度产生强烈的负响应。因此,BGE在夏季较低(<0.2),在冬季较高(>0.5)。对于所有测量的代谢过程,最明显的温度响应出现在较低温度下,Q 10 值通常比温暖水域高 2 倍。尽管资源可用性存在显著差异,但 4 个河口子系统之间的 BR 和浮游细菌碳消耗 (BCC) 的温度依赖性和大小都非常相似。虽然 BP 和 BGE 的温度依赖性也相似,但它们的大小差异很大,营养丰富的子系统值最高,而开阔海湾值最低。子系统之间的这种碳代谢模式全年都存在,并通过温度操控实验得到证实,这表明温度对 BP 和 BGE 的影响并未超过资源可用性的影响。我们得出结论,温度是调节该系统中 BR 和 BCC 季节性的主要因素,而 BP 和 BGE 受温度和有机物质量的影响,并且每个因素的相对重要性在全年都会发生变化。
Microphytobenthos(MPB)对河口初级生产产生了重大贡献,因此量化其生物量对于评估其生态系统功能至关重要。传统的抽样方法是劳动的,在逻辑上具有挑战性,无法提供MPB生物量的全面空间分布图。卫星图像提供了一种可行的替代方法,用于绘制各种时间和空间分辨率的大面积。但是,在该场中使用了与原位采样的少量平方Centi米一致的空间分辨率的成像设备。这使得将现场生物量测量与远程感知的辐射测量值相关联。在这项研究中,在不同高度的无人机(UAV)上安装了两个类似的多光谱传感器,以及在〜1 m高度上获得图像的定制设备上,以收集guadalquivir estuta(SpataLquivir estuta)mudflats mudflats mpb Biofilms的非常高的空间分辨率反射数据。此外,使用高光谱谱仪获得原位反射率进行验证。同时,使用2 mM深度接触Corer方法收集了MPB样品,该方法通过高性能液相色谱(HPLC)分析,以测量主要MPB颜料的浓度。为了评估MPB色素和不同反射率的光谱指数,使用了广义的线性混合效应模型(GLMM),从而实现了叶绿素与所有测试的光谱指数之间的显着正相关关系。这些模型用于绘制微卵巢生物量,在
由于其位置在海洋和淡水生态系统的交汇处,河口受到海洋和土地全球变化的影响。最近的证据表明,河口生态系统内的环境状况发生了许多变化,从升高温度到初级生产的变化等。我们利用了有关水温,盐度,溶解的氧气和叶绿素-A浓度的长期高分辨率数据,在美国东南部的3个国家河口研究储量中,以表征河口水质的趋势和季节性驱动因素。我们记录了长期趋势和季节性模式的时空变异性,并且在我们的研究期间无处不在的水温升高(1995-2022),主要是由于冬季(冬季(12月至2月))的变化驱动,并且随着时间的推移溶解的氧气略有减少。我们还记录了河口和河口内部和叶绿素浓度的趋势趋势的强烈时空变异性。了解河口生态系统中生物物理条件的变化对于确保我们预测生态系统功能和服务的能力至关重要,因为气候条件继续改变,河口可以提供。
摘要:通过比较底物依赖性生长动力学,研究了 6 种具有不同生长策略的大型藻类在低氮 (N) 供应下维持生长的能力。在夏季藻类受氮限制时,通过实验确定了维持最佳生长所需的氮和 2 种慢速生长藻类的氮吸收动力学。Fucus r~resiculosus 和 Codium fragilc 以及 4 种快速生长的藻类,Chnetolnorpha Ij~~rn、Cladophora serica、Cerarn~um rubrum 和 Ulva lactuca。在藻类中维持最大生长所需的氮在藻类中相差 16 倍,其中慢速生长的藻类对氮的需求最高。短命藻类对氮的需求较高,这是因为其生长速度最高可达 13 倍,最大生长时氮含量高出 2 至 3 倍。另外,在低和高底物浓度下,快速生长的藻类吸收单位生物量铵和硝酸盐的速度比慢速生长的藻类快 4 至 6 倍,但慢速生长的藻类的最大磷吸收量与需求量的比值较大。因此,快速生长的藻类往往需要相对较高的外部无机氮浓度来达到饱和生长。在氮受限条件下,所有 6 种大型藻类都能通过短暂增强的速率吸收铵(即激增吸收)来利用高浓度铵的脉冲。然而,在较低的、自然存在的铵浓度下,吸收量仅略有增强,这表明激增吸收的生态重要性较小。我们的结果表明,在低氮供应条件下,生长缓慢的大型藻类可能比快速生长的藻类更能满足其氮需求。这与常见的观察结果一致,即营养贫乏的沿海地区主要以生长缓慢的大型藻类为主,而不是短命物种,尽管短命物种的氮吸收能力更高。