7天前 — 零件编号或规格。209-62351-08。设备名称。数量。2.00。单位。电动发电机... 不能附加条件,即申请人必须具备国防部竞标资格(各部委统一资格)...
摘要:随着人工智能技术的快速发展,人工智能图像识别已成为解决传统环境监测难题的有力工具。本研究针对河湖环境中的漂浮物检测,探索一种基于深度学习的创新方法。通过精细分析静态和动态特征检测的技术路线,结合河湖漂浮物的特点,开发了完整的图像采集和处理流程。本研究重点介绍了三种主流深度学习模型SSD、Faster-RCNN和YOLOv5在漂浮物识别中的应用及性能比较。此外,还设计并实现了一套漂浮物检测系统,包括硬件平台构建和软件框架开发。经过严格的实验验证,该系统能够显著提高漂浮物检测的准确性和效率,为河湖水质监测提供了新的技术途径。关键词:图像识别;深度学习;河湖浮标检测
科罗拉多河是美国西南部、整个美国以及墨西哥西北部的重要生命线。这条河发源于落基山脉的融雪,流经 7 个州,流入墨西哥共和国,全长 1,450 英里,最终流入大海。它为 4,000 万人提供饮用水,并支持着美国一些最大的城市,包括丹佛、盐湖城、圣达菲、拉斯维加斯、洛杉矶、圣地亚哥、菲尼克斯和提华纳。这条河对我们的粮食供应至关重要,灌溉着美国近 90% 的冬季蔬菜作物。它流经九个国家公园,是十多种濒危鱼类和野生动物的重要栖息地。科罗拉多河支持着一个价值 1.4 万亿美元的经济,包括 260 亿美元的娱乐支出和西部数十万个工作岗位。然而,这条河的水量过度开采,以至于距离其科尔特斯海河口近 100 英里的地方就已干涸。
对General域Corpora培训的大型语言模型(LLM S)在自然语言处理(NLP)任务上表现出了显着的要求。然而,以前的研究通过以域为中心的Corpora训练LLM S在专业任务上表现更好。是由这种见解的刺激,我们开发了一套全面的LLM S套件,该套件是针对地球科学,生物学,物理学,地球物理学,行星科学和天体物理学的紧密相关领域量身定制的,并使用从多元化数据来源中汲取的科学公司进行了培训。模型套件包括:(1)使用域特异性词汇和语料库培训的编码模型来解决NLP任务,(2)基于对比的学习文本嵌入了使用多种数据集培训的模型,以解决信息检索和(3)使用知识蒸馏的较小型号的较小版本,这些型号的较小版本,这些模型的较小版本是对延期或资源约束的较小型号。我们还创建了三个新的科学基准数据集,气候 - 变化NER(实体识别),
GPRO - 福斯特附近格林彼得湖下方的桑蒂亚姆河中游(inst) GPRO - 福斯特附近格林彼得湖下方的桑蒂亚姆河中游平均值(1 天) USACE 生物参考最大值* USACE 生物参考最小值*
奥塔哥地区拥有丰富的淡水资源,包括地表水、天然湖、人工湖、地下水和湿地。奥塔哥的社区依靠这些水资源维持社会、文化和经济福祉。河流和湖泊构成了该地区地表水的大部分。瓦纳卡湖、瓦卡蒂普湖和哈威亚湖等大湖以及人工湖邓斯坦湖、罗克斯堡湖和昂斯洛湖等占新西兰湖泊总面积约 23% 的大型湖泊。主要集水区是瓦纳卡湖、瓦卡蒂普湖和哈威亚湖,这些湖汇入奥塔哥最大的河流克鲁萨河/马塔奥河。奥塔哥还有许多地下水源。湿地构成了奥塔哥许多重要的景观和生态系统元素,包括毯状沼泽和绳状沼泽、盐碱地、沼泽森林残余、浅湖群、河口盐沼和谷底沼泽。
图 41.黑斯廷斯河流域 FLAG 湿度图......................................................................................78 图 42.曼宁河流域站点单位源面积产生的盐负荷......................................................................80 图 43.曼宁河流域的土地利用....................................................................................................81 图 44.曼宁河流域的地下水盐度预测....................................................................................82 图 45.曼宁河流域 FLAG 湿度图....................................................................................................83 图 46.卡鲁阿河流域站点单位源面积产生的盐负荷.............................................................................84 图 47.卡鲁阿河流域的土地利用....................................................................................................85 图 48.Karuah 河流域................................................................................86 图 49。Karuah 河流域的 FLAG 湿度图......................................................................................87 图 50。麦夸里湖和塔格拉湖流域站点单位源面积产生的盐负荷.............................................................................................................89 图 51。麦夸里湖和塔格拉湖流域的土地利用.............................................................................89 图 52。麦夸里湖和塔格拉湖流域的地下水盐度预测.............................................................90 图 53。麦夸里湖和塔格拉湖流域的 FLAG 湿度图.............................................................91 图 54。霍克斯伯里河流域站点单位源面积产生的盐负荷.............................................................................93 图 55。霍克斯伯里河流域的土地利用情况.....................................................................................94 图 56.霍克斯伯里河流域地下水盐度预测.....................................................................95 图 57.霍克斯伯里河流域 FLAG 湿度图.............................................................................96 图 58.悉尼盆地站点单位源面积产生的盐负荷.............................................................97 图 59.悉尼盆地的土地利用情况.............................................................................................98 图 60.悉尼盆地地下水盐度预测.............................................................................99 图 61.悉尼盆地 FLAG 湿度图................................................................................................100 图 62.伍伦贡盆地站点单位源面积产生的盐负荷.............................................................................101 图 63.伍伦贡盆地的土地利用....................................................................................................102 图 64.伍伦贡盆地的地下水盐度预测....................................................................................103 图 65.伍伦贡盆地的地下水盐度预测....................................................................................104 图 66.肖尔黑文河流域站点单位源面积产生的盐负荷....................................................................106 图 67.肖尔黑文河流域的土地利用....................................................................................................106 图 68.地下水盐度预测肖尔黑文河流域................................................................................108 图 69.肖尔黑文河流域 FLAG 湿度图........................................................................109 图 70.克莱德河流域站点单位源面积产生的盐负荷.......................................................110 图 71.克莱德河流域的土地利用....................................................................................................111 图 72.克莱德河流域地下水盐度预测....................................................................................112 图 73.克莱德河流域 FLAG 湿度图....................................................................................113 图 74.莫鲁亚河流域站点单位源面积产生的盐负荷...............................................114 图 75.莫鲁亚河流域的土地利用盆地................................................................................................115 图 76.莫鲁亚河流域地下水盐度预测...............................................................116 图 77.莫鲁亚河流域 FLAG 湿度图.........................................................................................117 图 78.图罗斯河流域站点单位源面积产生的盐负荷.........................................................................118 图 79.图罗斯河流域土地利用....................................................................................................119 图 80.图罗斯河流域地下水盐度预测....................................................................................120 图 81.图罗斯河流域 FLAG 湿度图.........................................................................................121 图 82.贝加河流域站点单位源面积产生的盐负荷 ......................................................................124 图 83.贝加河流域的土地利用 ......................................................................................................125 图 84.贝加河流域的地下水盐度预测 ......................................................................................126 图 85.贝加河流域的 FLAG 湿度图 .............................................................................................127 图 86.托万巴河流域站点单位源面积产生的盐负荷 .............................................................128 图 87.托万巴河流域的土地利用 .............................................................................................129 图 88.托万巴河流域的地下水盐度预测 .............................................................................130 图 89.托万巴河流域................................................................131 图 90。东吉普斯兰盆地各站点单位源面积产生的盐负荷................................132