发动机 E-01 燃油系统结冰推进燃油系统结冰威胁您可能需要一份问题文件来确定符合 § 33.67 的方法,以解决冰可能在飞机燃油系统中积聚并释放到发动机燃油入口对发动机造成的威胁。本问题文件将要求根据 § 33.67(b)(4)(ii) 进行认证测试,以证明从飞机系统释放出的冰或夹带在飞机燃油供应中的冰不会聚集在燃油/油热交换器 (FOHE) 的表面或燃油系统的任何其他部分,并导致燃油流动受限。潜在的冰源包括夹带的冰晶和固体冰块,它们可能由于温度变化、燃油流或振动等因素而突然释放。这是一个与飞机级要求有关的接口问题。发动机制造商可能需要与飞机制造商协调。
图片列表 图 1.1:层流分离泡(Gad-El-Hak 提供)....................................................... 4 图 1.2:层流分离泡压力分布(Gad-El-Hak 提供)....................................... 7 图 1.3:表面油流 – 示例(Lyon 提供)................................................................. 9 图 1.4:表面粗糙度的影响(Gad-El Hak 提供)....................................................... 13 图 1.5:翻折翼型和未翻折翼型的阻力比较(Lyon 提供).................................... 14 图 2.1:改进的 S5010 顶部 MCL(Shkarayev 提供)......................................................... 21 图 2.2:n 阶多项式 MCL 的示例............................................................................. 22 图 2.3:翼型形状参数的描述............................................................................. 23 图 2.4:n 阶 MCL 比较...................................................................................................... 24 图 2.5:带定义多边形和控制点的贝塞尔曲线............................................................... 26 图 2.6:带定义多边形和控制点的贝塞尔 MCL ............................................................ 28 图 2.7:贝塞尔 MCL 比较......................................................................................................... 28 图 2.8:贝塞尔翼型前缘形状细节......................................................................................... 30 图 2.9:贝塞尔翼型后缘形状细节.........................................................................................
重型燃气轮机由于发电率较低,灵活性和热效率而在发电中发挥了越来越重要的作用。在严格的环境条件下,燃气轮机的主要子系统(如压缩机,燃烧器和涡轮机)在运行时间内降低,这在很大程度上影响了系统的效率和生产力。因此,开发有效方法以监测重型燃气轮机的性能降解以进行系统预测性维护,从而提高机器的效率和生产率至关重要。本文提出了一种新的物理知情的机器学习方法,以通过无缝整合热力学热平衡机制,组件特征,多源数据和人工神经网络模型来预测燃气轮机的降解。考虑到流量,质量和能量平衡,建立了基于机制的热力学模型,然后将其集成到系统水平,以在不同条件下对燃气轮机进行性能模拟。系统模型能够有效地模拟那些无法测量的参数的值(例如gt排气流)或不准确测量(例如燃油流)。基于机器学习的数据清洁方法用于预处理燃气轮机的多元原始数据。使用ISO条件下的物理信息模型获得的设计性能数据和校正值之间的差异用于评估性能降解。从