B. Amann,E。Chaumillon,Sabine Schmidt,L。Olivier,J。Jupin等人。在法国大西洋海岸的盐马什中,沉积物积聚的多年和多年代进化:对碳的影响。河口,沿海和货架科学,2023,293,pp.108467。10.1016/j.ecs.2023.108467。hal-04252550
海湾。第 2 部分:评估气候变化驱动的沿海灾害和社会经济影响的工具。J Mar Sci Eng 6(3)。https://doi.org/10.3390/jmse6030076 Erikson LH、Herdman L、Flahnerty C、Engelstad A、Pusuluri P、Barnard PL、Storlazzi CD、Beck M、Reguero B、Parker K (2022) 在预计的 CMIP6 风和海冰场的影响下,使用全球尺度数值波浪模型模拟的海浪时间序列数据:美国地质调查局数据发布。 https://doi.org/10.5066/P9KR0RFM Esch T、Heldens W、Hirner A、Keil M、Marconcini M、Roth A、Zeidler J、Dech S、Strano E(2017 年)在从太空绘制人类住区地图方面取得新突破——全球城市足迹。ISPRS J Photogramm Remote Sens 134:30–42。 https://doi.org/10.1016/j.isprsjprs.2017.10.012 Florczyk AJ、Corbane C、Ehrlich D、Freire S、Kemper T、Maffenini L、Melchiorri M、Pesaresi M、Politis P、Schiavina M、Sabo F、Zanchetta L(2019)GHSL 数据包 2019。在:欧盟出版物办公室,卷 JRC117104,7 月期。https://doi.org/10.2760/290498 Giardino A、Nederhoff K、Vousdoukas M(2018)小岛屿沿海灾害风险评估:评估气候变化和减灾措施对埃贝耶(马绍尔群岛)的影响。 Reg Environ Change 18(8):2237–2248。https://doi.org/10.1007/s10113-018-1353-3 Gonzalez VM、Nadal-Caraballo NC、Melby JA、Cialone MA(2019 年)概率风暴潮模型中不确定性的量化:文献综述。ERDC/CHL SR-19–1。密西西比州维克斯堡:美国陆军工程兵研究与发展中心。https://doi.org/10.21079/11681/32295 Gori A、Lin N、Xi D(2020 年)热带气旋复合洪水灾害评估:从调查驱动因素到量化极端水位。地球的未来 8(12)。 https://doi.org/10.1029/2020EF001660 Guo Y、Chang EKM、Xia X (2012) CMIP5 多模型集合投影全球变暖下的风暴轨道变化。J Geophys Res Atmos 117(D23)。https://doi.org/10.1029/2012JD018578 Guo H、John JG、Blanton C、McHugh C (2018) NOAA-GFDL GFDL-CM4 模型输出为 CMIP6 ScenarioMIP ssp585 准备。下载 20190906。地球系统网格联盟。 https://doi.org/10. 22033/ESGF/CMIP6.9268 Han Y, Zhang MZ, Xu Z, Guo W (2022) 评估 33 个 CMIP6 模型在模拟热带气旋大尺度环境场方面的表现。Clim Dyn 58(5–6):1683–1698。https://doi.org/ 10.1007/s00382-021-05986-4 Hauer ME (2019) 按年龄、性别和种族划分的美国各县人口预测,以控制共同的社会经济路径。科学数据 6:1–15。 https://doi.org/10.1038/sdata.2019.5 Hersbach H、Bell B、Berrisford P、Hirahara S、Horányi A、Muñoz-Sabater J、Nicolas J、Peubey C、Radu R、Schepers D、Simmons A、Soci C、Abdalla S、Abellan X、Balsamo G、Bechtold P、Biavati G、Bidlot J, Bonavita M 等人 (2020) ERA5 全局再分析。 QJR Meteorol 协会。 https://doi.org/10.1002/qj. 3803 Homer C,Dewitz J,Jin S,Xian G、Costello C、Danielson P、Gass L、Funk M、Wickham J、Stehman S、Auch R、Riitters K (2020) 来自 2016 年国家土地覆盖数据库的 2001-2016 年美国本土土地覆盖变化模式。ISPRS J Photogramm Remote Sens 162(二月):184-199。https://doi.org/10.1016/j.isprsjprs.2020.02.019 Huang W、Ye F、Zhang YJ、Park K、Du J、Moghimi S、Myers E、Péeri S、Calzada JR、Yu HC、Nunez K、Liu Z (2021) 飓风哈维期间加尔维斯顿湾周边极端洪灾的复合因素。海洋模型 158:101735。 https://doi.org/10.1016/j.ocemod.2020.101735 Huizinga J、de Moel H、Szewczyk W (2017) 全球洪水深度-损害函数。在:联合研究中心 (JRC)。https://doi.org/10.2760/16510 跨机构绩效评估工作组 (IPET) (2006) 新奥尔良和路易斯安那州东南部飓风防护系统绩效评估跨机构绩效评估工作组第 VIII 卷最终报告草案——工程和运营风险与可靠性分析。Jyoteeshkumar Reddy P、Sriram D、Gunthe SS、Balaji C (2021) 气候变化对季风后孟加拉湾强烈热带气旋的影响:一种伪全球变暖方法。 Clim Dyn 56(9–10):2855–2879。https://doi.org/10.1007/s00382-020-05618-3 Knapp KR、Kruk MC、Levinson DH、Diamond HJ、Neumann CJ(2010)国际气候管理最佳轨迹档案(IBTrACS)。Bull Am Meteor Soc 91(3):363–376。https://doi.org/ 10.1175/2009BAMS2755.1 Knutson TR、Sirutis JJ、Zhao M、Tuleya RE、Bender M、Vecchi GA、Villarini G、Chavas D(2015)根据 CMIP5/RCP4.5 情景的动态降尺度对 21 世纪末强烈热带气旋活动的全球预测。 J Clim 28(18):7203–7224。https://doi.org/10.1175/ JCLI-D-15-0129.1 Kron W(2005)洪水风险 = 危害 • 价值 • 脆弱性。Water Int 30(1):58–68。https://doi.org/10.Gunthe SS、Balaji C (2021) 气候变化对季风后孟加拉湾强烈热带气旋的影响:一种伪全球变暖方法。Clim Dyn 56(9–10):2855–2879。https://doi.org/10.1007/s00382-020-05618-3 Knapp KR、Kruk MC、Levinson DH、Diamond HJ、Neumann CJ (2010) 气候管理国际最佳轨迹档案 (IBTrACS)。Bull Am Meteor Soc 91(3):363–376。 https://doi.org/ 10.1175/2009BAMS2755.1 Knutson TR、Sirutis JJ、Zhao M、Tuleya RE、Bender M、Vecchi GA、Villarini G、Chavas D(2015 年)根据 CMIP5/RCP4.5 情景的动态降尺度对 21 世纪末强烈热带气旋活动的全球预测。J Clim 28(18):7203–7224。https://doi.org/10.1175/ JCLI-D-15-0129.1 Kron W(2005 年)洪水风险 = 危害 • 价值 • 脆弱性。Water Int 30(1):58–68。https://doi.org/10.Gunthe SS、Balaji C (2021) 气候变化对季风后孟加拉湾强烈热带气旋的影响:一种伪全球变暖方法。Clim Dyn 56(9–10):2855–2879。https://doi.org/10.1007/s00382-020-05618-3 Knapp KR、Kruk MC、Levinson DH、Diamond HJ、Neumann CJ (2010) 气候管理国际最佳轨迹档案 (IBTrACS)。Bull Am Meteor Soc 91(3):363–376。 https://doi.org/ 10.1175/2009BAMS2755.1 Knutson TR、Sirutis JJ、Zhao M、Tuleya RE、Bender M、Vecchi GA、Villarini G、Chavas D(2015 年)根据 CMIP5/RCP4.5 情景的动态降尺度对 21 世纪末强烈热带气旋活动的全球预测。J Clim 28(18):7203–7224。https://doi.org/10.1175/ JCLI-D-15-0129.1 Kron W(2005 年)洪水风险 = 危害 • 价值 • 脆弱性。Water Int 30(1):58–68。https://doi.org/10.
日本周围的水域实际上是世界领先的生物多样性热点之一,发现了约4,000种鱼类。但是,关于沿日本海岸的多种鱼类分布以及季节性变化的发生,仍然有很多尚不清楚。我们不能在海洋中自由地四处走动,因此调查在那里游泳的鱼并不容易。调查的困难也是保护的困难。人们担心全球环境突然变化(包括全球变暖)对生活在海洋中的生物的影响,但很少有了解它们的方法。 该项目有三个目的。首先是通过最新的生物敏感性“环境DNA”和公民的帮助来观察日本沿岸鱼类的生物多样性。第二个是创建一个生物多样性数据库,世界各地的科学家可以自由使用。第三个是用自己的双手了解熟悉的生态系统,并创建一个垫脚石来思考如何保护和利用日本沿海地区。
Philippe Janssen、John C. Stella、Hervé Piégay、Bianca Räpple、Bernard Pont 等人。退化河流沿岸森林组成和功能特征与自然演替的差异,具有多种压力源遗留。整体环境科学,2020 年,721,第 15/137730 页。10.1016/j.scitotenv.2020.137730。hal-03026265
航路 CSCHL 智利沿海服务 ⇒ CS 沿海服务 智利限制服务 航路 RS CT 图瓦卢海岸 200 英里以内限制服务 ⇒ 图瓦卢海岸 200 英里以内限制服务 航路 CS 沿海服务 ⇒ CS 沿海服务 航路 REWS 河流和河口水域服务 ⇒ SWS 平稳水域服务 河流和河口水域服务 航路 GCS 大沿海服务 ⇒ 日本限制服务或非国际服务 航路 RSBS 文莱、沙巴和沙捞越河流服务 ⇒ SWS 平稳水域服务 文莱、沙巴和沙捞越河流服务 航路 CTSSB 沙巴、沙捞越和文莱沿海贸易限制服务 ⇒ CS 沿海服务 文莱、沙巴和沙捞越限制服务 航路 RS CS 限制沿海服务 ⇒ CS 沿海服务 限制沿海服务 航路 RS 河流服务 ⇒ SWS 平稳水域服务 河流使用 航路 SWS 平稳水域服务 ⇒ SWS 平稳水域服务 航路 HS 港口服务 ⇒ SWS 平稳水域服务 港口使用 航路 RHS 河流和港口服务 ⇒ SWS 平稳水域服务 河流/港口使用 航路 RSU RE 限制服务、普拉特河、巴拉那河、乌拉圭河和 Punta Rasa 与 Punta del 之间的河岸水域 ⇒ SWS 平稳水域服务 普拉特河、巴拉那河、乌拉圭河和 Punta Rasa 与 Punta del 之间的河岸水域限制服务 航路 CS I 印度沿岸服务 ⇒ CS 沿岸服务 印度限制服务 航路 HTCS 国内贸易限制服务和沿岸服务 ⇒ CS 沿岸服务 国内贸易限制服务和沿岸服务 航路 HTS 国内贸易限制服务 ⇒ CS 沿岸服务 国内贸易限制服务 航路 LTS 本地贸易限制服务 ⇒ CS 沿岸服务 本地贸易限制服务 航路 AGS 阿拉伯湾服务 ⇒ CS 沿岸服务 阿拉伯湾限制服务航路 CS P 菲律宾沿岸航行服务 ⇒ CS 沿岸航行服务 菲律宾限制航行服务 航路 BCS 孟加拉国沿岸航行服务 ⇒ CS 沿岸航行服务 孟加拉国限制航行服务 航路 CTL 沿岸贸易限制 ⇒ CS 沿岸航行服务 沿岸贸易限制 航路 THTS 泰国国内贸易服务 ⇒ CS 沿岸航行服务 泰国限制航行服务 航路 PPWS P 菲律宾部分保护水域服务 ⇒ SWS 平稳水域服务 菲律宾限制航行服务 航路 SP30S 新加坡 30 英里限制航行服务 ⇒ 新加坡 30 英里以内的限制航行服务 航路 RGCS 限制性大沿岸航行服务 ⇒ RGCS 限制性大沿岸航行服务 航路 KPSS 古晋-Pending 和泗里街服务 ⇒ 古晋-Pending 和泗里街之间的限制航行服务 航路 CS B 峇劳沿岸航行服务 ⇒ CS 沿岸航行服务 峇劳限制航行服务 航路 CTS 砂拉越沿岸贸易限制服务 ⇒ CS沿海服务 砂拉越限制服务 航路 RSPLKB 限制服务往返于:槟城与浮罗交怡与瓜拉玻璃市/瓜拉比达、槟城与勿拉湾(棉兰) ⇒ 限制服务往返于:槟城与浮罗交怡、兰卡威与瓜拉玻璃市/瓜拉吉打、槟城与勿拉湾
批准日期:2024 年 5 月 OPNAVNOTE 5400 Ser DNS-12/22U102027 2023 年 6 月 8 日 OPNAV 通知 5400 来自:海军作战部长 主题:在阿拉巴马州莫比尔成立墨西哥湾沿岸造船、改装和修理支队监督员以及在威斯康星州马里内特成立造船、改装和修理浴室支队监督员 参考:(a) OPNAVINST 5400.44B (b) OPNAVINST 5400.45A 1. 目的。批准海军海上系统司令部(COMNAVSEASYSCOM)指挥官的请求,建立造船、改装和修理主管(SUPSHIP)墨西哥湾沿岸支队(DET)亚拉巴马州莫比尔和SUPSHIP巴斯DET威斯康星州马里内特,参考(a)。2. 范围和适用性。本通知适用于 COMNAVSEASYSCOM;SUPSHIP,美国海军(USN),墨西哥湾沿岸,密西西比州帕斯卡古拉;SUPSHIP,USN,缅因州巴斯;SUPSHIP 墨西哥湾沿岸 DET 亚拉巴马州莫比尔负责人;以及 SUPSHIP 巴斯 DET 威斯康星州马里内特负责人。3. 背景。a. SUPSHIP 墨西哥湾沿岸 DET Mobile 的建立使得能够对 75 名 SSGC 员工和 24 名承包商支持人员在私人承包商设施中执行的造船操作进行本地监督,以支持 5 个不同的新建造合同。b。威斯康星州 Marinette 的 SUPSHIP Bath DET 的成立与负责监督海滨运营的 SUPSHIP Bath DET San Diego 保持一致。新的 FFG 造船项目被授予 Fincantieri Marinette Marine 作为总承包商,需要处理和处理机密信息。4. 组织变革。自 2023 年 6 月 20 日起,第 4a 和 4b 款中的变更适用。
沿岸陷波 (CTW) 承载着海洋对边界强迫变化的响应,是沿岸海平面和经向翻转环流的重要机制。受西部边界对高纬度和公海变化的响应的启发,我们使用线性正压模型来研究科里奥利参数 (b 效应)、海底地形和海底摩擦的纬度依赖性如何影响西部边界 CTW 和海平面的演变。对于年周期和长周期波,边界响应的特点是改良的架波和一类新的漏坡波,它们沿岸传播,通常比架波慢一个数量级,并向内陆辐射短罗斯贝波。能量不仅沿着斜坡向赤道方向传输,而且还向东传输到内陆,导致能量在当地和近海耗散。 b 效应和摩擦力导致沿赤道方向沿岸衰减的陆架波和斜坡波,从而降低了高纬度变化对低纬度的影响程度,并增加了公海变化对陆架的渗透——较窄的大陆架和较大的摩擦系数会增加这种渗透。该理论与北美东海岸的海平面观测结果进行了比较,定性地再现了沿海海平面相对于公海向南的位移和幅度衰减。这意味着 b 效应、地形和摩擦对于确定沿海海平面变化热点发生的位置非常重要。
• 第聂伯河沿岸的前线仍然稳定。俄罗斯军队正在强调其防御阵地,而乌克兰军队则继续进行纵深间接攻击。
美国陆军工程兵团 (USACE) 与旧金山港 (POSF) 合作,领导旧金山海滨沿海洪水研究 (SFWCFS),以评估旧金山市和县 (CCSF) 海湾沿岸现有和未来的沿海洪水灾害。为了支持这项研究,USACE 选择了第二代沿海风险模型 (G2CRM) 来评估现有和未来沿海洪水灾害的潜在损失及其各自的经济成本。本报告介绍了为 G2CRM 开发沿海风暴输入的技术工作,重点是描述 CCSF 海湾海岸线沿岸复杂的旧金山湾 (Bay) 沿海灾害,并开发适当代表这些灾害的沿海风暴数据库。