(CZMU),环境与国家美化部,绿色和蓝色经济已从美洲发展银行(IDB)获得融资,以实施气候弹性和可持续的综合沿海地区管理(CRS-ICZM)计划。CRS-ICZM计划将帮助巴巴多斯政府提高该国沿海地区对气候风险的弹性,并促进气候富裕的经济发展。2。沿海地区管理部门打算与合格的和
• 继续进行海上活动,包括使用起重机装载的驳船调动和通过驳船运送材料供应。 • 继续进行打桩活动,使用驳船起重机为 A 号码头附近的重建码头安装结构基础。 • 使用驳船起重机在结构基础上安装预制混凝土桩帽和梁,以塑造重建的码头。 • 为挡土墙、花坛和无障碍人行坡道基础进行陆地回填和混凝土浇筑。
生物时间序列观测对于更好地理解生态过程并确定人类对海洋的影响至关重要(Ducklow等,2009;BáLint等,2018; Takahashi等,2023)。有效进行了有效的海洋监测计划,有时使用数十年来收集的时间序列(Fontaine and Rynearson,2023年)。环境DNA(EDNA)从水样品中进行的元法编码越来越多地用于监测沿海生物多样性并检测随着时间的推移生物群落的变化(Deiner等,2017; Mathieu等,2020)。现在,通过使用EDNA METABARCODING或其他生物分子技术(https://obon-ocean.orgean.org/about/),建立了诸如海洋生物分子观测网络(OBON)之类的程序,以通过全球规模的合作和长期研究来增强海洋生物监测。为了确定在不同的时间尺度和环境条件上是否存在稳定的,复发的EDNA检测,对环境中的埃德娜(Edna)如何随物种物候(例如,生命阶段,生殖和代谢)和物理过程(例如水动力学,温度,uv)(seymour,uv)(Seymour,2019; des souza; de 22; eve and and and 2016; eve; et e and; et e and and;这种知识对于对长期EDNA数据趋势的有意义解释也至关重要。越来越多的研究报告了EDNA检测峰在短季节内的窗口中,并将这种模式归因于生物学因素(Laramie等,2015; Sigsgaard等,2017; Stoeckle等,2017; Handley等,2019; Handley等,2019; 2019; Troth et al。,2021; 2021; Sevellec et al。虽然有几项研究报道了用埃德娜(Edna)检测到的社区的显着年度变化(Closek等,2019; Laporte等,2021; di Capua等,2021; Carvalho等,2024),2024年),很少有短期变量(Kelly et al。,2018 al。等人,2024年)以及自然的短期可变性如何影响我们解释沿海EDNA数据以评估社区结构随时间变化的能力。水的时间系列edna metabarcoding提供了沿海北极生物监测的重要潜力。北极海洋正经历着由物理转变驱动的深刻气候和相关的生物变化,包括海冰熔化,海温升高和运输活动增加(Garcia-Soto等,2021; Murray等,2024)。尽管对北极生物群进行测量的后勤挑战,其中许多是地方性的,但已经记录了海洋社区的快速变化(Post等,2009; Koenigstein,2020)。Edna Metabarcoding跨多个营养水平检测生物的能力使其成为这个广阔而偏远地区的宝贵工具(Lacoursière-Roussel等,2018; Leduc等,2019; Sevellec等,Sevellec等,2021; Geraldi等,Geraldi等,2024)。这种非侵入性方法也是生物监测海洋社区的最伦理方法之一,使其在敏感的北极地区特别有价值。为了充分表征生物多样性中的长期闪烁,我们仍然需要理解北极地区海洋生物多样性的季节性和季节性季节性模式。在这里,我们比较了使用加拿大北极丘吉尔港作为案例研究的不同时间抽样策略,以监测埃德娜的后生社区,目的是
该市于2014年1月发起了零视力,意识到造成严重伤害和死亡的交通崩溃并不是不可避免的“事故”,但可预防的事件可以系统地解决并通过仔细的政策干预进行。从那以后,该市拥有大量资源来减少交通死亡人数。纽约市曾是实施街头安全计划的美国同伴城市的典范,强调着专注于数据和机构间协作。建立在过去十年的成功基础上,并遵循数据以确定和针对改进的目标,城市机构将交通安全视为公共安全的基本要素,并努力确保其工程,执法和教育工作中的公平性。纽约市对零视觉的投资,总计45亿美元到2028财年,已确保资源可以继续加速城市街道的重新设计和重建,以防止和惩罚驱动和促进安全的步行和努力,并驱动和促进安全的步行和自行车。
摘要:沿海地区开发和海滩休闲用途的不断增加与沿海地区沉积物和沙子相关的公共卫生危害威胁日益增大。本研究采用适当的标准方法评估了尼日利亚翁多州阿拉罗米海滩沙子的微生物和垃圾特性。所得数据显示,分离出 29 种微生物,其中包括 17 种细菌、7 种真菌和 5 种酵母。微生物负荷范围为 1.45 × 10 -4 CFU/g 至 12.4 × 10 -4 CFU/g,符合世界卫生组织规定的允许限值(8 CFU/g 至 250 CFU/g)。然而,旅游活动频繁区和旅游活动稀少区的微生物负荷存在显著差异(t=0.011)。此外,海滩沙子被分为七类。然而,最常见的垃圾类型是干树叶和树枝形式的有机废物(59%),其次是塑料/聚苯乙烯(32%)。平均垃圾密度从 7 月份的 10.00 升/平方米到 12 月份的 21.57 升/平方米不等。没有废物处理和厕所设施。Araromi 海滩属于中度肮脏类别,在旱季和雨季的清洁海岸指数分别为 8.52 和 6.81。总体而言,这项研究的结果表明,Araromi 海滩仍处于欠开发状态,其所在社区是海滩上垃圾数量增加的主要原因。因此,建议为了吸引更多游客并改善整体海滩体验,当地社区和政府应投资定期海滩清理和废物管理计划,以保持海滩的原始状态。 DOI:https://dx.doi.org/10.4314/jasem.v29i1.29 许可证:CC-BY-4.0 开放获取政策:JASEM 发布的所有文章均为开放获取,任何人都可以免费下载、复制、重新分发、重新发布、翻译和阅读。 版权政策:© 2025。作者保留版权并授予 JASEM 首次出版权。本文的任何部分均可未经许可重复使用,但必须引用原始文章。引用本文为:ODEWUMI, O. S; QUIST, MM (2025)。尼日利亚翁多州 Araromi 海滩沙子的微生物负荷和凋落物特征分析。J. Appl. Sci. Environ. Manage. 29 (1) 229-237 日期:日期:收到日期:2024 年 10 月 22 日;修订日期:2024 年 11 月 20 日;接受日期:2024 年 12 月 28 日;发布日期:2025 年 1 月 31 日 关键词:沙尘特征;微生物负荷;海滩清洁度;垃圾密度 许多旅游景点通常位于城市内部,环境安静,以满足城市居民和邻近城镇居民的休闲需求。许多其他旅游景点则建立在城市外,为人们提供远离喧嚣喧嚣的城市生活的休憩之所(Odunlami 和 Ijeomah,2016 年)。提供此类休闲场所的最常见旅游类型之一是滨海旅游,它基于陆地和海洋交界处的独特资源组合,提供水、海滩、风景秀丽的游泳、划船、日光浴和冲浪等便利设施
职位描述沿海和海洋生物多样性顾问(4T)项目描述印度尼西亚,马来西亚,巴布亚新几内亚,菲律宾,菲律宾,所罗门群岛和帝汶 - 所谓的珊瑚三角(CT)的沿海和海洋地区 - 代表海洋生物多样性的全球全球生物多样性中心。相关的生态系统商品和服务提供了当地生计和国家蓝色经济体的来源,但与此同时,由于人类和气候变化引起的压力因素,它们越来越有风险。珊瑚三角的巨大规模及其复杂的生态连通性模式需要大规模的管理和保护其海洋资源的方法。在共同实施的珊瑚礁,渔业和粮食安全(CTI-CFF)的共同实施的珊瑚三角举措下,六个CT国家的政府以及一系列国家和地区伙伴的政府已经发起了针对性的努力,尤其着重于三个跨界海景。目前,这些处于不同的阶段,在关键政策框架和能力中剩下差距。区域计划“针对珊瑚三角的海洋和沿海弹性解决方案”(SOMACORE)旨在支持国家和地区利益相关者在六个CT国家的多层次方法中扩大验证的实践的努力。每个国家和海景的预见措施和活动包括对制定和实施部门战略和行动计划的支持,以及在地方和国家一级促进跨部门合作。扩展成功解决方案是该计划的核心,并且通过在不同层面的工作和不同利益相关者群体的参与得到支持。知识交流,联合学习,能力发展,技术支持和政策倡导旨在促进良好实践的复制。giz负责协调该计划的产出和结果的努力,并与六个CT国家的政府,珊瑚礁珊瑚礁,渔业和粮食安全(CTI-CFF)的珊瑚三角倡议的区域秘书处(CTI-CFF)以及全球范围内,国家和地区开展业务。在菲律宾,GIZ与生物多样性和渔业部门的关键参与者紧密合作,特别是与环境与自然资源部的生物多样性管理局,以及农业部的渔业和水生资源局,重点介绍了基于生态系统资源管理和基于生态资源的基于地区资源管理的菲律宾菲律宾组合中的有效地区的保护惯例。主要角色沿海和海洋生物多样性协调员/顾问将协调基于生态系统的资源管理活动在菲律宾的实施,重点是Sulu-Sulawesi海景。此角色包括对海洋保护区和MPA网络的技术和行政支持的贡献,在国家和地方层面威胁和迁徙海洋利益相关者。
2 格拉斯哥大学教育学院,格拉斯哥,英国 3 赫尔大学教育学院,赫尔,英国 4 威瑟恩西高中,威瑟恩西,英国
1遗迹研究所和海洋科学,托里亚拉大学,鲁斯德拉塔纳博士,托里亚拉601,马达加斯加; jamal.mahafin@ihsm.mg 2 Marbec,UniversityÉmontpellier,IRD,CNRS,Ifremer,34090,法国蒙彼利埃; Jean-dominique.durand@ird.fr 3水生环境中的顾问组织,法国Ravine des Cabris 97432; pierre.valade@ocea.re(p.v.); adeline.collet@ocea.re(A.C。)4 ISEM,CNRS,蒙彼利埃大学,IRD,EPHE,34000,法国蒙彼利埃; frederique.cequeira@umontpellier.fr 5 Entropy,IRD,联盟大学,CNRS,New-Calé大学,IFREMER,IFREMER,C/O HALIEUTIC INSTITUTE和MARINE SCIENCES和MARINE SCIENCES,TOLIARA,TOLIARA,RUE,RAUE RABESANDRATANAS,TOLIARA 601,MADAGAGASCARCARASTARA,MADAGAGASCARANGARA; dominique.ponton@ird.fr *通信:henitsoa.jaonalison@gmail.com;这样的。: +261-342-775-130
天然资本或资产可以通过不同的方式概念化。一种常见的实用方法是8种“广泛栖息地类型”中的一个划分(表1)。原则上每个都代表一个独特的空间区域,可以像拼图拼图一样组合。这些分类为英国自然资本账户和自然英格兰自然资本地图集的基础。它们也是自然资本定义的结构,包括所有自然元素(例如大气,气候和地下资产)是否基于生态系统。
问题:本文是“全球海上流动和当地影响:港口城市区域的全球分类和词汇表”问题的一部分,由 Mina Akhavan(代尔夫特理工大学)、Yvonne van Mil(代尔夫特理工大学)和 Carola Hein(代尔夫特理工大学)编辑,完全开放获取,网址为 https://doi.org/10.17645/oas.i442