本研究旨在利用 ABAQUS 有限元软件确定各种影响参数(例如隧道直径 (D)、深度 (H)、宽度 (B)、长度 (L)、楼层数、建筑物与隧道轴线的水平距离 (X))以及土壤特性(例如内摩擦角 (ϕ)、泊松比 (υ)、弹性模量 (E) 和黏聚力 (C))对地表沉降的影响。结果显示,在一定深度下,沉降随隧道直径的增加而增加,而随隧道深度的增加而减小。建筑物宽度和长度的变化也会直接影响沉降;因此,随着建筑物的横截面积及其刚度和硬度的增加,建筑物的宽度和长度增加,地基沉降变得更加均匀且更耐位移,从而导致地表沉降减少。此外,随着建筑物与隧道轴线的距离增加,沉降减少并在等于隧道直径的距离后呈现恒定趋势。根据敏感性分析的结果,隧道深度对地表沉降的影响最大,可以通过控制隧道距离地面的深度来防止地表沉降。此外,在土壤地质力学参数中,弹性模量在本研究中对沉降的影响最大。最后,根据结果,隧道、建筑物和土壤特性对地表沉降的影响非常重要,尤其是在城市环境中。
在密度功能理论(DFT)的框架中,我们研究了具有平面外结构不对称性的Janus CRSSE的结构变形和机械行为,并使用常规的过渡金属二进制二进制基因生元(TMDS)CRS CRS 2和CRSE 2和CRSE 2。Janus CRSSE可能是可加工的光电和压电应用的潜在候选者。我们预测这些化合物在化学,机械上是在TM(CR)和chalcogen(X = S,SE)原子之间的共价键中动态稳定的。由于拉伸应变的影响,每个单层的CR-X键长增加,厚度降低。有趣的是,janus crsse的平面内固定,剪切和层模量,泊松比,最终的BI/单轴应力介于CRS 2和CRSE 2单层的值之间。与TMD相似,方向依赖于平面内部和Poisson的比例证明了Janus CRSSE中的各向同性行为。此外,它可以维持更大的单轴/双轴拉伸应变,其临界应变等于CRX 2单层。通过应用高阶应变,我们还发现了预期的平均弹性塑性行为。这些发现表明,Janus CRSSE单层是一种机械稳定且延性的化合物,可维持杂种行为。
- 哈萨克斯坦 Supiyeva 等人的储能论文介绍了使用环保型水性电解质开发可在 -40°C 至 +60°C 的宽温度范围内工作的超级电容器。主要思想是提出一种下一代解决方案,用于在纳米多孔碳电极中快速储能,成本低且安全。多孔碳网络可以保持本体电解质的液态并防止其冻结。此外,由于水的电还原而导致的水性电解质中的氢气释放会因甲醇的添加而改变,所有这些电解质的微调可使超级电容器在低温和高温下完全运行。 - 在智能纺织品领域,Albargi 等人使用石墨烯/硅氧烷复合导电油墨应用于股线 (PAY) 开发了新型压阻应变传感器,标志着可穿戴传感器技术的重大进步。莱卡和棉纱的混合,编织芯纺,涂有硅氧烷聚合物树脂,提高了机械耐用性和使用寿命。创新设计提高了负泊松比,灵敏度提高了 2.5 倍,应变范围提高了五倍。该传感器可有效地将机械应变转化为
摘要:近年来,由于事故和血管疾病的增多,残疾问题日益严重。截肢患者失去肢体功能往往导致步态异常。能量储存和返回 (ESAR) 足部假肢提供了一种替代方案,有助于改善步态并最大限度地减少截肢者行走阶段的代谢能量消耗。本研究采用了 3 种设计,模型来自 Catia V5 软件。有限元法分析使用 Ansys Workbench 18.1 软件评估这三种设计,在正常步行活动中,负载为使用者体重的 1.2 倍,最大重量为 70 公斤。模拟材料是碳纤维预浸料,其拉伸强度、杨氏模量、泊松比和密度分别为 513.72 MPa、77.71 GPa、0.14 和 1.37 g/cm3。决策矩阵法用于根据预定标准确定最佳足部假肢设计。决策矩阵中的最高值为设计 3 中的 76。所选设计(设计 3)经过步态周期分析后,最大 von Mises 应力值为 76.956 MPa,每个步态周期足跟着地载荷模型的安全系数值为 1.0762;平足 3.2509;足尖离地 6.6263。
1.11.3.2.1 表面波 372 1.11.3.2.2 地震层析成像 372 1.11.3.3 接收函数 372 1.11.3.4 实验室研究 373 1.11.3.4.1 速度 - 密度关系 373 1.11.3.4.2 V p -V s 关系和泊松比 373 1.11.3.4.3 地震各向异性和最上层地幔 374 1.11.4 地壳结构的非地震约束 375 1.11.4.1 重力异常 375 1.11.4.2 航空磁学 376 1.11.4.3 地电测量 379 1.11.4.4 热流数据379 1.11.4.5 钻孔数据 380 1.11.4.6 表面地质、暴露深地壳剖面和捕虏体数据 380 1.11.5 洋壳和被动边缘的结构 380 1.11.5.1 典型的洋壳 381 1.11.5.2 大洋中脊 384 1.11.5.3 大洋高原和火山省 384 1.11.5.4 洋沟和俯冲带 387 1.11.5.5 被动大陆边缘 388 1.11.6 大陆地壳的结构 389 1.11.6.1 一般特征 389 1.11.6.2 主要地壳类型 389 1.11.6.3 相关性构造省的地壳结构分析 394 1.11.7 全球地壳模型 394 1.11.7.1 沉积盖层 395 1.11.7.2 结晶地壳和上地幔 395 1.11.8 讨论与结论 397 参考文献 398
本研究论文涉及辅助材料及其在现代车辆中的应用。本文是关于通过阐明现代汽车行业中辅助材料的基本原理和分类来制备负泊松比泡沫材料的准备,并讨论了引擎盖和汽车保险杠的辅助材料的最新进度。现代汽车中的辅助材料在近几十年来的辅助材料及其机械性能的基本概念及其机械性能以及快速发展趋势。这项研究采用了三角研究方法,并全面使用了各种方法,例如文献综述,专家访谈和预标准分析,以实现对辅助材料的全面评估。具体而言,对于每个研究目标,使用预设标准分析构建相应的全面评估系统,以深入讨论辅助材料的性能,优势,应用和环境保护材料,并评估其在现代汽车应用中的性能。它不仅对现代汽车行业的领域具有巨大的价值,而且还可能对其他领域的物质研究产生影响。此外,研究结果是可扩展的,可以为将来的辅助材料的研究和开发提供指导,并促进建立更系统的研究方法和全面的评估系统。通过这项研究,可以提供更准确的材料选择依据,可以促进环保材料的使用,并可以进一步制定可持续发展计划
现代电子设备,微机械设备和应用要求对重量或成本比率高可靠性,包括刚性和兼容底物上多层薄膜的各种组合,而使用的材料的机械性能可能会有所不同。近年来,弹性模量和泊松比的差异变得越来越明显。因此,需要对弹性材料特性不匹配影响的更深入的观点进行更深入的观点的强烈推动。通过Hutchinson和Suo描述的自发屈曲方法很容易地测量薄膜在不同底物材料上的粘附。但是,原始方法进行了几个简化。是,省略薄膜和底物之间弹性不匹配的影响的变化,基于当时使用的材料的较小变化,这对于具有较大弹性特性的现代材料组合而言并非如此。可以通过邓德斯参数描述两种不同材料之间界面上的弹性不匹配。在这项工作中,根据原始模型的一般描述,将有限元建模与分析解决方案结合使用,以扩展Hutchinson和SUO方法的可用性,用于与更多不同的材料一起使用,具有更高的精度。获得的结果指出了一个事实,即无视Dundurs参数在评估与加载模式相关的粘附能量时引入了重大错误,证明了正确包括弹性不匹配的必要性。
随着全息技术的快速发展,基于跨表面的全息传播方案表现出极大的电磁(EM)多功能性潜力。然而,传统的被动式额叶受到其缺乏可重构性的严重限制,从而阻碍了多功能全息应用的实现。Origa-mi是一种机械诱导空间变形的艺术形式,它是多功能设备的平台,并引起了光学,物理和材料科学的极大关注。Miura-Ori折叠范式的特征是其在折叠状态下的连续重构性,在全息成像的背景下仍未探索。在此,我们将Rosenfeld的原理与Miura-Ori表面上的L-和D-金属手性对映异构体一起定制,以量身定制孔径分布。利用Miura-Ori折叠状态的连续可调性,金属结构的手性反应在不同的折叠构型上有所不同,从而实现了不同的EMALOGRAPHIC成像功能。在平面状态下,可以实现全息加密。在特定的折叠条件下,并由特定频率的自旋圆形极化(CP)波驱动,可以在具有CP选择性的指定焦平面上重建多重全息图像。值得注意的是,制造的折纸跨表面表现出较大的负泊松比,促进了端口和部署,并为自旋选择系统,伪装和信息加密提供了新颖的途径。
钛合金具有高强度重量比、高耐腐蚀性和高熔点等优异性能,已广泛应用于航空航天工业。然而,据推测,通过对钛合金进行涂层处理,可以进一步提高其性能,使其更耐超高速撞击。早期的实验研究表明,用 Ti/SiC 金属基纳米复合材料 (MMNC) 涂覆 Ti-6Al-4V 基材可提高复合材料的抗超高速撞击性能。涂层中 SiC 的体积分数为 7%。这些实验是使用光滑粒子流体动力学 (SPH) 建模方法模拟的。Ti-6Al-4V 基材和 Lexan 弹丸使用了 Johnson-Cook 材料模型。由于缺乏对 MMNC 的详细机械特性,因此使用了双线性弹塑性材料模型来模拟涂层。在本研究中,进行了单参数敏感性分析,以通过与实验弹坑体积的比较来了解 SPH 模型的敏感性。双线性弹塑性材料模型的参数包括弹性模量、泊松比、屈服强度、切线模量和失效应变。对于体积分数为 35% SiC 的 Ti/SiC 金属基纳米复合材料 (MMNC),这些参数的变化范围为各自基准值的 ±5% 和 ±10%,并且可以获得不同应变率下的应力-应变曲线。这些值适用于整个测试速度范围。利用敏感性分析中的参数,结果表明,当没有实验数据时,可以提高 MMNC 的 SPH 建模精度。结果还表明,双线性弹塑性材料模型可用于高应变率下的 MMNC 涂层。
在过去的几十年里,研究人员对研究用铝土矿颗粒等矿物制备复合材料的天然优势表现出了极大的兴趣,并证明了它们作为高性能复合材料制造中成本效益高的增强剂的有效性。这项研究是使用不同比例(2、4 和 6 wt%)的伊拉克天然铝土矿粉末通过搅拌铸造和 Mg 添加剂制备铝金属基复合材料 (AMMC) 的一次新尝试。在实验工作中,将铝土矿石粉碎并研磨,然后在 1400 ○ C 下烧制粉末。使用粒度、XRD 和 XRF 分析对粉末进行表征。对 AMMC 铸件进行机械加工、抛光、预热,并使用硬度测量、微观结构观察和杨氏模量、泊松比和断裂韧性计算来表征其性能。此外,还通过从引伸计记录中测量裂纹口张开位移 (CMOD) 来评估其断裂韧性。结果表明,通过搅拌铸造添加 2 和 4 wt% 的镁和伊拉克烧铝土矿,可以成功生产出具有改进的断裂韧性、硬度和弹性模量性能的 AMMC。此外,CMOD 测量结果显示,添加 2 和 4 wt% 的铝土矿颗粒可使基质材料的“最大失效载荷”和“临界载荷下的临界 CMOD”分别增加至约“25 和 44%”和“32 和 47%”。此外,在这些比例下,通过 K IC 和杨氏模量计算的基质材料的断裂韧性分别显示出约“22 和 69%”和“8 和 12%”的改善。由于 AMMC 在这种比例下具有脆性,添加 6% 的铝土矿虽然可以记录硬度(57%)和弹性模量(22%)的最高改善,但无法使断裂韧性达到所需的改善。