本文试图探索法律与人工智能之间的相互联系,重点关注其范围和挑战。人工智能自诞生以来就飞速发展,旨在将人类思维复制到机器中。尼泊尔最大的邻国已向前迈进了一步,开发了第一个律师机器人,但在尼泊尔,其范围尚未得到研究和讨论。因此,本文探讨了尼泊尔法律领域人工智能的不断增长的范围和挑战。它分析了人工智能在法律领域的范围,以找出其在法律研究、判例法管理、电子发现、文件准备、合同审查、证据评估等法律领域的重要性。尽管在法律领域有充足的空间,但它面临着许多挑战,包括实施成本高昂的问题。政策制定者需要更多地了解基于人工智能的工具来发展国家。本文的结论是,尽管有足够的空间,但在尼泊尔实施人工智能和基于法律的工具仍然很困难。应该进行适当的研究来实施基于人工智能的工具来取代法律领域的旧传统机制。
1. 了解人工智能的法律和伦理含义,以及它们如何影响社会、组织和个人。 2. 分析人工智能应用和技术对政府、行业和公众等各利益相关者的潜在影响。 3. 批判性地理解人工智能的潜在风险和好处,以及如何在最大化好处的同时降低风险。 4. 了解法律、法规和道德在塑造人工智能发展和使用方面的作用。 5. 了解如何将道德原则和框架应用于人工智能相关的决策。 6. 了解人工智能运行的社会、文化和政治背景,以及这些背景如何影响人工智能的发展和部署。 7. 了解公共政策在规范和塑造人工智能发展和使用方面的作用。 8. 了解研究伦理在人工智能中的作用以及人工智能研究人员的道德责任。 9. 了解不同观点和声音在塑造人工智能发展和使用方面的作用,包括代表性不足的群体和边缘化社区的观点。 10.了解人工智能在促进或阻碍社会公正和平等方面的作用。
我们 retrain.ai 明白,如果使用得当,人工智能可以让雇主大大加强公正的招聘实践,从而带来多元化、包容性劳动力的明显好处。我们期待进一步完善第 144 号地方法律,以改善不仅在纽约市,而且在我们城市范围之外的招聘实践,因为无数国内外公司通过位于这里的业务运营与纽约市联系在一起,其中许多需要在纽约市的五个行政区内招聘人员。感谢您在对话中加入各种声音。
“是否可以从其他行业的风险管理类似或具有指导意义的模式中汲取灵感,例如通过注册、激励、认证或许可促进监督的法律和政策?” 基础模式是否应区别对待? 或者新法规将以结果为导向? ▪ 法规将对技术保持中立吗? 基于原则的法规(如 UDAAP 法律)不需要关注特定技术
这些材料旨在介绍演讲中涉及的主题。演讲和此处包含的材料并非试图为任何特定情况提供法律建议。必须根据所有相关事实和情况对每种情况进行单独分析。由于与此处主题相关的法律问题的复杂性,律师的参与至关重要。这些材料仅用于教育和讨论目的,未经演讲者明确书面同意,不得在本研讨会之外复制、使用或分发。此处的观点(如果有)不属于演讲者的任何客户或公司。
除了版权之外,人工智能生成的内容还会在商标和专利等领域引发知识产权问题。商标法保护与产品或服务相关的独特标志和符号,当人工智能生成的内容包含或引用现有商标时,商标法可能会面临挑战。同样,当人工智能系统开发新技术或流程并产生人工智能生成的内容时,保护发明和技术创新的专利法可能会面临新问题。这些知识产权问题需要仔细审查,以确保公平、平衡的法律框架,在促进创新的同时保护所有利益相关者的权利。
第二,我们讨论法律,技术和行为因素如何提供有关在哪种背景下使用我们的法律-XAI分类法的解释的指导。以信用评分为例,我们演示了法律如何规定可以将哪种类型的解释方法用于特定算法决策系统。我们展示了法律,计算机科学和行为原则的结合如何指导决策者,法律学者和计算机科学家为特定法律领域选择正确的解释方法。第三,我们证明了如何将我们的法律-XAI分类法应用于包括医疗补助,高等教育和自动决策在内的各个领域。我们认为,在创建解释权时,决策者应该更具体。自动化的决定通常可以用大量的解释方法来解释,决策者应指定哪些解释应必须提高决策者的政策目标。我们的法律-XAI分类法可以帮助决策者根据其政策目标确定正确的解释方法。
人工智能是经过编程以执行特定算法的计算机软件,这些算法是一组代码,用于执行任务、分析和识别大量数据中的模式、从这些模式中得出结论、预测未来结果并根据这些数据做出明智的决策。人工智能涉及的主要概念是机器处理、机器学习、机器感知和机器控制。在这种情况下,“机器”一词的使用意味着人工智能系统,其中可能包括计算机软件或用于操作更复杂设备的系统网络等。它需要训练机器根据输入到机器中的数据进行学习,从而使机器能够确定主题数据中的模式并据此得出结论。数据是驱动人工智能机器引擎的动力,数据集越大,人工智能从数据中学习到的就越多。
人工智力现在存在于我们日常生活的许多领域中。它有望领导新的和有效的业务模型,以在私营和公共部门中有效和以用户为中心的服务。在深度学习,(深度)增强学习和神经进化技术方面的AI进步可以为人工通用智能(AGI)铺平道路。但是,AI的开发和使用也带来了挑战。数据语料库中普遍存在用于训练AI和机器学习系统的固有偏见归因于大多数这些挑战。此外,多个实例强调了在基于动力的决策中需要隐私,公平性和透明度的必要性。本书系列将为研究人员,领导者,决策者和决策者提供一条途径,以分享AI最前沿的研究和见解,包括其在道德,可解释的,可解释的,隐私的,可信赖的,可信赖的和可持续的方式中的使用。
艺术。第 49/2023 号法律第 1 条将公平报酬定义为与所执行工作的数量和质量、专业服务的内容和特点成比例的报酬,并符合部长令规定的报酬,对于技术工程和建筑服务,目前以 2016 年 6 月 17 日部长令中指明的关税以及公共合同法附件 I.13 中的规定为代表,该附件根据上述部长令更新了关税框架。如果在第 49/2023 号法律之前,这些关税被视为参考参数,因此在招标过程中可能会降低,那么在第 49/2023 号后续法律通过后产生的现行监管表述似乎确立了这些关税的不可减损性,正如 ANAC 决议中也强调的那样。 343 日。 20.07.2023,其中指出“根据新立法,部长关税成为确定工程和建筑服务合同费用的具有约束力和不可减损的参数”。
