结果:新建立了 10 倍 ara-C 抗性的 HL-60 变异株、4 倍 CAFdA 抗性的 HL-60 变异株和 30 倍 CAFdA 抗性的 HL-60 变异株。这些变异株显示脱氧胞苷激酶和脱氧鸟苷激酶表达降低,但表面转运蛋白(hENT1、hENT2、hCNT3)表达完整。与非变异 HL-60 细胞相比,这些变异株细胞内核苷类似物三磷酸盐表达较低。这些变异株还过度表达 Bcl-2 和 Mcl-1。维奈克拉单药对耐药变异株无细胞毒性。然而,维奈克拉与核苷类似物联合使用对变异株有协同细胞毒性。Alvocidib 单药对细胞有细胞毒性。然而,alvocidib 诱导 G1 停滞并抑制同时给药的核苷类似物的细胞毒性。
摘要 本文描述了在现场测量量子霍尔电阻标准时对两种不同的数字阻抗电桥进行比较,目的是实现电容的 SI 单位法拉。在 EMPIR 联合研究项目 18SIB07 GIQS(石墨烯阻抗量子标准)中,德国联邦物理技术研究院 (PTB) 开发了一种约瑟夫森阻抗电桥,意大利国家计量研究所 (INRIM) 和都灵理工大学 (POLITO) 开发了一种电子数字阻抗电桥。前者基于约瑟夫森波形发生器,后者基于电子波形合成器。INRIM-POLITO 阻抗电桥被转移到 PTB,通过测量温控标准和石墨烯交流量化霍尔电阻 (QHR) 标准对这两个电桥进行了比较。 1233 Hz 下 10 nF 电容标准的校准不确定度在 PTB 电桥的 1 × 10 − 8 以内,INRIM–POLITO 电桥的不确定度在 1 × 10 − 7 左右。比较在综合不确定度内相互验证了两个电桥。结果证实,数字阻抗电桥允许从 QHR 实现 SI 法拉,其不确定度可与 BIPM 和主要国家计量机构的最佳校准能力相媲美。
补充图 4:药物反应与 CDKN2A 缺失相关。DSS 3 对 (A) 克拉屈滨、(B) 氯法拉滨、(C) 帕比司他和 (D) 莫西替诺他的反应的平均值和标准差,按 CDKN2A 状态分组(突变和深度缺失合并为缺失)。每个点代表一个单独的细胞系。中心线为平均值,括号为标准差。使用 Mann-Whitney 检验确定显著性,** p < 0.01,* p < 0.05。
专家小组成员将就如何克服扩展和商业化技术的挑战以及变革型研究对制造竞争力的重要性进行深思熟虑的讨论。第1部分小组成员:发动机加速器Ben Downing; Joda Thongnopnua,NSF;和法拉·贝纳德(Farah Benahmed),突破性的能量。第2部分小组成员:梅根·奥康纳(Megan O'Connor),第n个周期; Feng Zhao,Storagenergy Technologies Inc.;和TS指挥Jason Huang。
封面照片展示了位于路易斯安那州摩根城附近阿查法拉亚河上的马蹄湾岛的开发情况。该项目于 2002 年启动,是利用自然系统和过程与自然共生的绝佳范例。通过战略性地放置沉积物来创建岛屿和湿地,带来了众多工程和环境效益,这些效益从 2012 年开始被量化。效益包括减少疏浚需求和为多种物种提供栖息地(见第 22 页的马蹄湾岛创建照片)。
电子与电气工程实验室概览 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 EEEL 战略技术领域:生物电子学. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 执法标准办公室. . . . . . . . . . . . . . . . . 14 微电子项目办公室. . . . . . . . . . . . . . . . . . . . 16 半导体电子部. . . . . . . . . . . . . . ... .................................................................................................................................................................................................................................................. 24 CMOS 器件和可靠性.................................................................................................................................................................................................................................... .................................................................................................................................................................................. .................................................................................................................................................................. 26 Macro Electronics....................................................................................................................................................................................................................................................................................................... .................................................................................................................................................................................................. .................................................................................................................................................................. 28 纳米电子器件计量学. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 纳米结构制造和计量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 法拉和阻抗计量学. . . . . . . . . . . . . . . . . . . . . 64 电子千克. . . . . . . . . . . . . . . . . . . . . . . 66 电力计量和智能电网. . . . . . . . . . . . . 68 量子传感器. . . . . . . . . . . . . . . . . . . . . 70 量子信息和测量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................................................................................................................................................ 90 生物磁学....................................................................................................................................................................................................................................................... 92 超导性....................................................................................................................................................................................................................... 92 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ................. ... ..................................................................................................................................................................................................................................................................................................................................................................................92 超导性.................................................................................................................................................................................................................................................................................................................................................................94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ................. ... ..................................................................................................................................................................................................................................................................................................................................................................................92 超导性.................................................................................................................................................................................................................................................................................................................................................................94
2.申请人在摄像头上提供身份证明以供识别。3.采访持续20分钟。4.面试成绩为委员会所有成员分数总和的算术平均值5.通过所有入学考试后,您可以通过个人账户中的通知查看面试结果。6.在面试当天,将制定一份协议(以既定的形式)。7.协议和出勤表提交给招生委员会并发送给 NTC。8.面试成绩申诉申请于入学考试成绩公布后的第二天 13:00 至 13:40 接受。9.此次上诉由法拉比哈萨克国立大学上诉委员会进行。
1 约旦扎伊图纳大学药学院药学系,安曼,约旦,2 阿联酋阿布扎比艾因大学药学院,3 阿联酋阿布扎比艾因大学 AAU 健康与生物医学研究中心,4 约旦伊尔比德约旦科技大学药学院临床药学系,5 英国米德尔斯堡蒂赛德大学社会科学、人文与法律学院心理学系,6 沙特阿拉伯利雅得沙特国王大学药学院药理学与毒理学系,7 约旦安曼佩特拉大学药学院药学系,8 伊拉克巴格达法拉希迪大学医学技术学院医学实验室技术系
●涵盖了多种用于光学应用的晶体:激光和非线性光学晶体,磁光晶体,闪烁体/剂量计晶体,宽带隙半导体,压电和铁电晶体等等等等。●我们当前的主要研究目标是:用于高亮度照明设备的单晶磷光器。用于激光机械的光学隔离器的法拉迪旋转器。用于高温使用的压电晶体,例如燃烧压力传感器。氧化包胶作为新型宽带隙半导体。用于IR光学应用的Chalcogenide●积极促进与大学,国立研究所和行业的合作,并积极追求国际合作,以促进新的观点和原始思想。
摘要:电化学混合电容器中的能量储能涉及快速的法拉达反应,例如在电池中观察到的互嵌型机制,或在适当电势下发生在固体电极表面上的氧化还原过程。混合钠离子电化学电容器带来了电容器高功率和电池的高特异能的优势,在这些电池中,活性炭用作关键的电极材料。活性炭中的电荷存储是由吸附过程而不是氧化还原反应引起的,并且是电气双层电容器。具有高表面积和高电导率的相互连接的多孔结构的高级碳材料是有资格获得有效储能的先决条件。