瘤胃膨胀是肥大反刍动物中最常见的消化障碍,该反刍动物的死亡人数约为2-3%,因此被认为是对反刍动物农业的严重威胁。由高浓缩物死亡引起的瘤胃膨胀的根本原因将归因于在脂肪时期产生大量稳定的泡沫。瘤胃泡沫形成的确切机制尚未研究。蛋白质,多糖和羧酸盐从饲料中得出,在瘤胃发酵过程中由微生物合成,可以用作瘤胃泡沫形成进度的泡沫剂或稳定剂。补充凝结的单宁和其他添加剂可以是防止高浓缩饮食诱发的饲料膨胀的一种有效方法。
摘要:本文的目的是评估并介绍从Cajanus Cajan(C。Cajan)和Vigna Subterranean(V.Subterranea)贝壳中获得的水和甲醇提取物的缩放抑制,并使用适当的标准技术从NSUKKA,NSUKKA,NIGERIA收集。定量植物化学分析(以mg/100g表示)揭示了C. cajan的二次代谢产物:类黄酮(2226.50±47.35),酚类(6294.65±117.35),皂苷(2.53±0.15),Alkalins(2.53±0.15),Alkaliacy(587)。 (0.77±0.02),萜类(989.87±26.72)和单宁(176.49±13.18)。同样,V。Subterranean展示了;类黄酮(2226.50±47.35),酚类(6400.11±65.22),皂苷(1.79±0.4),生物碱(114.22±17.64),类固醇(0.46±0.06),0.46±0.06),0.46±0.06,Terpenoids(Terpenoids) (58.18±1.12)。GC-MS分析C. cajan和V. supterranean提取物均显示了不同化合物的14个峰,其中包括; phenol, methylphenol, dimethylphenol, 2-furaldehyde, 2- hydroxymethifuran, levoglucosan, 4-mehtylguaiacol, vinylphenol, 4-vinylguaiacol, eugenol, vanillin, isoeugenol, 4- allyl-2-6dimethoxphenol and dimethylbenzene.此外,FT-IR光谱还鉴定出在3438和3430处的O-H(酚类),CH 2在2923和2884时拉伸脂肪族,以及C = C在两种提取物中都在1635和1643中不饱和。GC-MS,FT-IR和植物化学研究的结果共同表明,这些提取物含有环保成分,尤其是更高浓度的酚类和泡沫剂。这支持C. Cajan和V. Subterranean作为候选人的潜力,以部署为环保量表抑制剂。doi:https://dx.doi.org/10.4314/jasem.v28i10.13许可证:cc-by-4.0开放访问政策:Jasem发表的所有文章均为开放式访问文章,并且可以免费下载,复制,重新分配,reperstribute,repost,repost,reotost,translate和read。版权策略:©2024。作者保留了版权和授予Jasem首次出版的权利。只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Orjiocha,S。I; Ibezim-Ezeani,M。U; Obi,C。(2024)。评估Cajanus cajan和Vigna地下壳提取物中抑制化合物的缩放缩放抑制化合物用于工业利用。J. Appl。SCI。 环境。 管理。 28(10)3047-3056日期:收到:2024年7月30日;修订:2024年8月29日;接受:2024年9月21日发表:2024年10月5日关键字:比例;抑制剂;酚类;发泡剂;提取物产业面临着巨大的挑战,该管道堵塞是由管墙上的规模持续积累引起的。 这种生长是由于流体流体中溶解的钙和镁盐的存在而引起的。 这些阻塞导致管道中的各种问题,包括管道腐蚀攻击,流体减少SCI。环境。管理。28(10)3047-3056日期:收到:2024年7月30日;修订:2024年8月29日;接受:2024年9月21日发表:2024年10月5日关键字:比例;抑制剂;酚类;发泡剂;提取物产业面临着巨大的挑战,该管道堵塞是由管墙上的规模持续积累引起的。这种生长是由于流体流体中溶解的钙和镁盐的存在而引起的。这些阻塞导致管道中的各种问题,包括管道腐蚀攻击,流体减少
部门土木工程,Masinde Muliro科学技术大学,肯尼亚,该论文在承受静态轴向负载时研究了混凝土填充竹柱的负载能力开发。混凝土混合物C20和C30用于填充不同直径和细长比率的竹子。压缩测试是在31 kN/s的加载速率下使用单轴压缩机进行的。结果表明,混凝土级的增加对承载能力和C20的压缩应力具有显着影响,使混凝土填充竹的负载能力增加了0.8倍,而C30则增加了1.5倍。随着色谱柱直径的增加,载载能力会增加,但由于色谱柱的刚度降低而随着细长比的增加而减小。柱直径的增加减少了由于承载面积增加而导致的压碎应力。变形行为表明,装有混凝土混合物C20的标本更具延展性,并且在失败之前会发生大量位移,而C30样品在所有样品中均显示出蓬松的特性。关键字:竹子。混凝土柱,延展性,屈曲,变形,最终故障。doi:10.7176/cer/12-8-05出版日期:8月31日2020 1。在混凝土填充的竹子(CFB)标本中引入,纯混凝土用于填充竹子的内部空间,外部竹子的存在不仅具有一部分轴向负载,而且最重要的是将固定物限制在填充混凝土中。这使其可以更好地替代结构钢中的钢筋。由于其机械性能与木材相似,因此某些临时结构和永久性结构已掺入了竹子作为主要结构材料。竹子机械性能已由各种研究人员(Alito M,2005; Lakkad and Patel 1981; Amada and Sun,2001; 2001;)通过实验和分析研究进行了研究,并得出结论,由于其拉伸强度高于100MPA-400MPA-400MPA,其拉伸载荷高。L. Gyansah等人研究了在单轴载荷条件下竹子的断裂行为和粉碎强度。他们发现,新鲜竹子的压力为51.3,71.74.5,79.5和85.2 MPa,高度为250,210,170,130和90 mm,揭示了竹子的强度,其强度高于其他木制结构。l.Gyansah和S.kwofie还提出了使用未征用和缺口标本对竹子性能的影响。碎屑时间受到切口角度的变化显着影响。一个20,30,60,80和90º的缺口角具有42.46,35.78,21.89,18.02和10.30,作为压碎负载的blood量降低的指示,随着降低量的降低,它们的角度降低了。普通混凝土,由于其具有杰出特性,例如高水平的抗压强度和耐用性,因此被用作竹子的加固。(Neville 2011)。因此,所得的材料是具有可识别成分的复合材料,以利用两种成分的良好特征。混凝土的强度取决于每种成分的比例(砾石,沙子,水和水泥)(Churdley.R 1994)。混凝土由粘合剂(水泥糊)和填充物(粗骨料)组成,其中填充剂被粘合剂粘合在一起以形成合成砾岩。然而,尽管有几个优势,但具有其他局限性,例如低延展性,低拉伸强度,容易受到破裂和低强度与体重比(Swamy,R.N。2000)Muhamad等人(2017年)的初步测试建议使用Foamcrete填充常规的竹子作为对生竹的修改,以减少建筑中的木材使用情况。理论分析暗示泡沫凝岛与竹子之间的相互作用以及复合元件强度的相应增加。泡沫混凝土是一种轻巧,自由流动的材料,由Ackling泡沫制造,通过燃料泡沫剂溶液制备,以使用平均直径为100 - 150 mm的混凝土砂浆竹,使用10-15毫米厚度10-15 mm。研究中总共使用了16个样本。从现有的混合设计中采用了泡沫混凝土的混合设计,其密度在700-1000kg/m 3之间,具有最佳的强度比。Table 1.1 Specimens strength of Foam Crete Filled bamboo (Muhamad et al.,2017) Samples FCIB 1 FCIB 2 FCIB 3 AVERAGE Compression(N/mm2) 6.6 9.7 10.0 8.8 Flexural (N/mm2) 4.5 4.2 3.8 4.2 Tensile (N/mm2) 0.5 0.4 0.4 0.4