(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年3月1日发布。 https://doi.org/10.1101/2025.02.25.640071 doi:Biorxiv Preprint
摘要-Deepfakes对网络安全构成了不断发展的威胁,该威胁要求开发自动化对策。虽然大量的法医研究已致力于对深层的定义和定位,但逆转伪造为真实的解决方案尚待开发。在这项研究中,我们引入了网络疫苗接种,以赋予深层侵害的免疫力。类似于生物疫苗接种,该生物疫苗接种会在实际病原体中注射抗原在感染之前诱导免疫力,网络疫苗接种模拟了深层疫苗并进行对抗性训练以建立防御性免疫系统。旨在使用有限的计算资源来建立攻击无知的免疫力,我们建议用一次性压倒性的攻击模拟各种深击:面部掩盖。所提出的免疫系统由用于诱导免疫力和用于恢复面部含量的中源的胶囊组成。实验评估表明,有效的免疫力可以面对替换,面部重演和各种类型的腐败。
缩写h:人R:啮齿动物(鼠标或大鼠)DUC:差异离心,包括UC SST:血清饥饿UC-DEP:uc n/f:uc n/f:未发现(不可公开或未公开)AFM:AFM:AFM:ATOMIC MICROSC PACY BCA:BICICINCINCINCINCINCINIC DILLID:MOSSICAI LING SOCKINCINIC DLLEC:AFM:AFMICPOPY BCA:动态式:纳米颗粒跟踪分析TEM:透射电子显微镜QRT-PCR:定量实时聚合酶链反应
药房医疗必要性指南,以确定计划福利的覆盖范围,并发布以更好地了解做出覆盖范围决策的基础。考虑到个别成员的医疗保健需求,该计划逐案做出覆盖范围的决定。药房医疗必要性指南是针对被选定的治疗类或药物制定的,但被证明在有限的,定义的患者或临床情况下有效。它们包括基于当前文献审查的简洁临床覆盖标准,与服务领域的医生进行咨询,这些医生是特定领域的医学专家,FDA和其他政府机构政策,以及国家认证组织通过的标准。该计划每年修改和更新药房医疗必要性指南,或者如果有新的证据提示需要修订的新证据,则更频繁地。对于自保计划,覆盖范围可能会因福利文件的条款而异。如果在药房医疗必要性指南与自保成员的福利文件之间存在差异,则福利文件的规定将管理。治疗提供者完全负责成员的医疗建议和治疗。使用本政策不是付款的保证,也不是对特定索赔的最终预测。索赔付款在服务之日,福利协调,转介/授权和利用管理指南以及遵守规划政策和程序和索赔编辑逻辑时,均由会员资格和福利。
简介。— 生成非经典玻色子态 [1 – 3],例如压缩光、福克态和薛定谔猫态,不仅对量子力学的基础研究很重要,而且对量子技术的应用也很重要 [2,4 – 6]。例如,相空间中具有离散平移或旋转对称性的玻色子态 [7 – 14] 已被提议用于编码量子信息 [15 – 20],为硬件高效的量子纠错铺平了道路 [21 – 24]。可以通过例如交错的选择性数字相关任意相位 (SNAP) 和位移门 [25 – 27] 来制备和稳定玻色子代码态以防止耗散。最近的一系列研究 [28 – 31] 指出了一种基于汉密尔顿工程的替代被动控制方法,该方法可用于促进容错操作,例如通过抑制相位翻转错误 [28]、动态抑制与环境的耦合 [30] 以及加速代码字的状态准备 [31] 。汉密尔顿工程的另一个感兴趣领域是拓扑。由于相空间的非交换性质,在封闭的相空间环上移动的量子粒子获得类似于磁场中粒子的 Aharonov-Bohm 相的几何相。因此,相空间中的带隙格子汉密尔顿可以支持非平凡的陈数 [16,32 – 40] 。这是一个很有吸引力的特性,因为在具有物理边界的系统中,它将导致拓扑稳健的边缘传输。虽然已经展示了如何生成
图 5 展示了基本喷射点火几何形状的放大视图。先导喷射器提供少量燃料(不到总燃料流量的 5%)并保持每冲程恒定的体积。在火花塞辅助喷射器区域产生化学计量混合物,用于与燃料类型无关的火花点火条件。然后,主喷射器可以将根据负载需求而变化的燃料流量引入辅助启动的燃烧中。主喷射器和辅助喷射器的这种分离允许优化起燃区中的条件。
Y De Deene MR 部门 (-1K12),根特大学医院,De Pintelaan 185,9000 Gent,比利时 电子邮件:yves.dedeene@ugent.be 摘要。在放射治疗凝胶剂量测定中,根据患者的计划治疗对人形模型进行照射。这会产生三维剂量分布。为了读出凝胶剂量计模型,通常使用磁共振成像 (MRI)。由于特定的干扰,空间和剂量可靠性都可能受到影响。必须优化测量序列并补偿可能的成像伪影,以满足所提出的空间和剂量精度。在这篇评论中,处理了几种干扰源并提出了补偿策略。提出了读出技术的良好实践准则。最后,介绍了一种用于成像序列质量控制的工具。
1)量子计算电阻:量子计算带来的威胁对基于常规不对称和对称的加密算法对各种安全协议和应用产生了广泛的影响。由于这些算法的安全性依赖于计算复杂性来解决某些困难的数学问题,因此基于量子算法(例如Shor's或Grover的算法)的量子计算可以有效地解决这些数学问题。如[B-ETSI GR QSC 006]中所研究的,基于RSA和ECC的常规不对称算法将被Shor的算法完全破坏。对于对称算法,Grover的算法有效地将这些算法的关键大小减半。与传统的计算复杂性密码学相比,QKD可以被视为通过替换传统的钥匙交换机制来打击量子计算威胁的手段之一。
图1:WGB中的参考序列空间爆炸。A:可视化WGBS协议的两个主要步骤,导致参考序列空间的2倍爆炸。首先,参考序列是变性的,并用硫化钠填充剂处理,导致C转化为未甲基化的胞嘧啶。在原点链中具有CS的位置(Bisulfi Te治疗之前)始终为红色。在PCR步骤中,将链片段放大,导致代表链片段(+)及其反向补体( - )的序列。由于A到T的反向互补性在原始链中没有甲基化的C(所有位置都带有以前的GS颜色为橙色),因此这将结果4不同的链。b:WGBS序列空间中的读取映射问题,通过映射到完整的参考空间(1),并使用读取本身或其反向补充必须映射到参考(2)的C/T转换版本的想法。后者在空间要求中规定了2倍爆炸以进行参考。
我们构建了一个新的排列不变的代码,该代码纠正了任何tě1。我们还表明,新家庭中的代码正确量子缺失错误以及自发衰减错误。我们的构造包含一些预先已知的排列量子代码作为特定情况,这些量子代码也允许横向大门。在许多情况下,新家庭中的代码比保利·错误和删除的最佳先前已知的明确排列代码短。此外,我们的新代码系列还包括一个新的PP 4、2、2 QQ最佳单删除校正代码。作为一个单独的结果,我们概括了置换不变代码的条件,以纠正先前已知的t“ 1到任意数量错误的结果)。对于小t,这些条件可用于通过计算机构建代码的新示例。