一般信息 夏季,台风经常袭击佐世保。岛上大多数建筑都设计为可抵御强风,但偶尔也会发生轻微损坏,通常是被风吹来的碎片造成的。最重要的安全因素是留在室内,特别是在必须呆在室内的情况下。 风暴很可能在一两天内过去。提前计划可以让您舒适地度过风暴,而不是在黑暗中忍受长达四天的饥饿、口渴、无聊和困倦。 请记住,在严重风暴期间,电力、自来水和电话线等公用设施可能会中断。可能需要几天时间才能恢复。显然,这会使做饭、洗澡、与他人交流和卫生更加困难。 在救援到来之前,您的家人是否准备好应对与台风有关的紧急情况?以下是一些建议您“做的事情”,可以帮助您做好准备: 准备您的工具包 1. 一种准备方法是组装一个灾难/台风物资工具包。如果/当台风/灾难来袭时,您将没有时间购物或寻找物资。但如果您提前收集了物资,您的家人可以忍受疏散或居家隔离。 - 查看下面的清单。 - 收集列出的物资。 - 将疏散最可能需要的物资放在易于携带的容器中。可能的容器包括大行李袋、大露营背包、大有盖容器(带轮子) 工具包:以下是您应该为家庭储备的一些基本物品:
(2)Zhavoronkov,A.;伊万年科夫,Y.A.; Aliper,A.;维谢洛夫,M.S.;弗吉尼亚州阿拉丁斯基;阿拉丁斯卡娅,A.V.;弗吉尼亚州 Terentiev;波利科夫斯基,D.A.;库兹涅佐夫医学博士;阿萨杜拉耶夫,A.;沃尔科夫,Y.; Zholus,A.;沙亚赫梅托夫,R.R.;热布拉克,A.;米娜耶娃,L. I.;扎格里别尔尼,文学士;李,L. H.;索尔,R.;玛奇,D.;幸,L.;郭,T.; Aspuru-Guzik,A.深度学习能够快速识别有效的 DDR1 激酶抑制剂。纳特。生物技术。 2019,37(9),1038–1040。 https://doi.org/10.1038/s41587-019-0224-x。
曾任职务:意大利维琴察第 173 空降步兵旅,S-6 Re-Trans 操作员;意大利维琴察第 173 空降步兵旅第 508 空降步兵团第 1 营 Bravo 连,连队通讯士官长;北卡罗来纳州布拉格堡第 44 医疗司令部第 36 区域支援医疗连,排士官长;加利福尼亚州洛杉矶洛杉矶营帕萨迪纳招募中心,招募员和未来士兵领袖;第 35 战斗支援支援营,第 10 区域支援组,日本座间营,S-6 营;南卡罗来纳州杰克逊堡第 193 步兵旅第 13 步兵团第 2 营,连队一等士官长;南卡罗来纳州杰克逊堡第 193 步兵旅,总部一等士官长;第 5 旅工程营、第 4 安全部队援助旅、查理连一等军士;肯塔基州诺克斯堡人力资源司令部、25U 信号分部经理;第 20 化学、生物、放射、核、爆炸物司令部、G-6 高级士兵顾问。
卡非佐米可导致静脉血栓形成。血栓最常出现在腿部,称为深静脉血栓 (DVT),有时血栓会流向肺部,导致肺栓塞 (PE)。医生可能会给您开抗凝药来预防或治疗血栓。DVT 的常见症状包括身体某些部位发红、肿胀、疼痛和触摸时发热,通常是小腿。PE 的症状需要立即治疗,包括:呼吸短促或胸痛。
胆囊癌 (GBC) 是一种罕见但恶性程度最高的胆道肿瘤。它通常在晚期才被诊断出来,常规治疗方法并不令人满意。作为蛋白酶体抑制剂,硼替佐米 (BTZ) 在 GBC 中表现出优异的抗肿瘤能力。然而,其长期治疗效果受到其耐药性、稳定性差和高毒性的限制。本文报道了 BTZ 封装的 pH 响应性雌酮共聚物纳米粒子 (ES-NP (BTZ; Ce6)) 用于 GBC 特异性靶向治疗。由于 GBC 中雌激素受体表达高,ES-NP (BTZ; Ce6) 可以通过 ES 介导的内吞作用迅速进入细胞并聚集在细胞核附近。在酸性肿瘤微环境 (TME) 和 808 nm 激光照射下,BTZ 被释放,Ce6 产生 ROS,从而破坏“反弹”反应通路蛋白,如 DDI2 和 p97,从而有效抑制蛋白酶体并增加细胞凋亡。与使用 BTZ 单药治疗的传统治疗相比,ES-NP (BTZ; Ce6) 可以在较低 BTZ 浓度下显著阻碍疾病进展并提高其耐药性。此外,ES-NP (BTZ; Ce6) 在患者来源的异种移植动物模型和其他五种类型的实体肿瘤细胞中表现出类似的抗肿瘤能力,揭示了其作为广谱抗肿瘤制剂的潜力。
这项工作得益于加拿大社会科学与人文研究理事会提供的奖学金和差旅费资助,包括参与与苏联科学院的加拿大-苏联文化交流项目,我对理事会表示最深切的谢意。我还要感谢列宁格勒的苏联中央国家历史档案馆、苏联科学院历史研究所档案馆和普希金斯基大教堂档案馆知识渊博、乐于助人的工作人员;感谢列宁格勒萨尔特科夫-谢德林公共图书馆、莫斯科列宁州立图书馆、格鲁吉亚第比利斯州立图书馆和新不伦瑞克大学哈里特欧文图书馆细心的工作人员;还要感谢彭布罗克伯爵允许我在威尔顿府使用其家族档案。我特别感谢圣托马斯大学管理部门长期以来的不懈支持。这项工作还受益于与许多博学学者的讨论和建议:鼓舞人心的老师和珍贵的朋友 Marc Raeff;另一位鼓舞人心的老师,耶鲁大学的 Firuz Kazemzadeh;伦敦斯拉夫和东欧研究学院和最近的曼荷莲学院的 Stephen Jones;密歇根大学的 Ron Suny;莫斯科国立大学历史系的 Sergei Dmitriev;莫斯科历史档案研究所的 Petr Eroshkin;列宁格勒科学院历史研究所的 Sergei Iskiul' 和其他同事;莫斯科科学院历史研究所的 Ekaterina Indova 和其他同事;第比利斯科学院历史研究所的 Irakli Antelava、Otar Zhordania 和其他同事;新奥尔良大学的 Edward Lazzerini;乔治华盛顿大学的 Muriel Atkin;雷丁英国广播公司的 Robert Parsons;以及圣托马斯大学历史系的同事和学生
1 瑞士贝林佐纳意大利瑞士大学生物医学科学学院肿瘤学研究所; 2 SIB 瑞士生物信息学研究所,瑞士洛桑; 3 意大利阿维亚诺阿维亚诺肿瘤参考中心 - CRO; 4 西班牙巴达洛纳 Josep Carreras 白血病研究所 (IJC); 5 瑞士意大利大学生物医学研究所,瑞士贝林佐纳; 6 瑞士南部肿瘤研究所,瑞士贝林佐纳; 7 意大利佩鲁贾大学化学、生物和生物技术系; 8 瑞士意大利瑞士大学生物医学科学学院,瑞士贝林佐纳; 9 美国马萨诸塞州波士顿丹娜法伯癌症研究所和哈佛医学院肿瘤医学部慢性淋巴细胞白血病中心; 10 西班牙马德里红癌生物医学研究中心 (CIBERONC); 11 西班牙巴塞罗那加泰罗尼亚高等研究院 (ICREA) 和 12 西班牙巴塞罗那大学 (UB) 医学与健康科学学院生理科学系。 *AJA 和 SN 作为共同第一作者做出了同等贡献。
随着技术继续以惊人的速度发展,计算的未来正在呈现令人兴奋的新维度。该领域最有前途和最有趣的新兴技术之一是标量波,这一概念挑战了传统的计算范式。标量波具有革命性计算、通信和各种其他应用的潜力,因为它具有即时数据传输、降低能耗和抗电磁干扰等优势。在本文中,我们将探索标量波的世界,并深入探讨其重塑计算未来的潜力。标量波,也称为纵波,是一种电磁波,在几个基本方面与传统的横波不同。横波沿垂直于其运动的方向振荡,而标量波沿其传播方向振荡。这一独特特性使它们与众不同,并提供了大量应用和优势。标量波最早由著名科学家詹姆斯·克拉克·麦克斯韦于 19 世纪中叶提出,但直到 19 世纪末 20 世纪初尼古拉·特斯拉的发现,标量波才开始受到重视。特斯拉对非赫兹波(即不受光速限制的波)的概念很感兴趣,他相信标量波可以提供革命性的可能性。然而,他的工作在很大程度上仍然不为人知,直到最近几年,这一概念才开始受到关注 [1]。