春雨带来洪水的可能性增加,这是本月头版报道的主题。我们与当地专家讨论了洪泛区,这是一个我们都用过但可能了解有限的术语,除非我们的家或公司位于洪泛区内。交互式地图可通过头版报道中的网址在我们的网站上找到,威廉姆森县居民可以通过该地图查找其地址是否在最新的洪泛区范围内。多年来,当地官员一直努力利用所有可用数据为 FEMA 授权计划提供反馈。结果是逐个地块的分析,其中一些地块已添加到洪泛区指定中,而其他地块则从中删除。我们当地社区似乎有一个目标:当洪水来到德克萨斯州中部时保护财产和生命。
1。Location:___________________________________¼______¼______Section______Range______Township___________ Street Address________________________________________________________________________________________ 2.Type of Development: Filling _______ Grading _______ Excavation_______ Minimum Improvement_____________ Routine Maintenance______ Substantial Improvement______ New Construction______ Other______________________ 3.Description of Development:____________________________________________________________________________ ____________________________________________________________________________________________________ 4.前提:结构尺寸____________ft。x____________ ft。站点____________________________________ft。主要用途_____________________________附件用途(存储,停车等。)____________________________ 5。改进的价值(公平市场)$ _________________ $ ______________ $ ______________
图4显示了使用20倍交叉验证估计每个受试者的回忆间隔的结果。在图 4 中,横轴是时间,纵轴是来自 5 个受试者的 200 个样本(总共 1000 个样本)的准确率。红框内是语音回忆部分。前文研究 [2] 中的方法(图 4 中的蓝线)的准确率在语音回忆片段之间下降到 0.2,而本文提出的方法(图 4 中的橙线)则达到了 0.8 的稳定准确率。 从这些结果可以看出,可以说所提出的方法对于估计回忆间隔是有效的。然而,当我们观察所提出的方法在语音回忆部分之外的准确度时,我们发现与以前的研究相比,该方法将语音回忆部分之外的部分估计为回忆率的情况更为常见。这被认为是由于大脑中噪音的影响。因此,我们旨在通过将增加的 10 个样本应用于所提出的方法来减少这种噪音。结果就是图4中的绿线。在保持回忆部分的准确度的同时,非回忆部分的准确度得到了提高。基于这些结果,我们研究了所提出方法的最佳添加次数。结果如图5所示。图 5 显示了所有受试者对每个加法数字的准确率。蓝线表示整个时间内的平均准确率,橙线表示回忆期间的最大准确率。横轴是添加的样本数量,纵轴是准确率。通过添加 sigma,回忆部分的准确率得到了提高,达到了约 90%。另外,10 次添加等于 1 个样本。
2015 年,Bolloré 集团在联合国气候变化大会 (COP21) 期间在香榭丽舍大街启动了第一条 Bluetram 线路,继续部署其清洁和可持续的出行解决方案。作为官方合作伙伴,集团还向联合国成员国提供了 Bluebus 和 Bluecar ® 车队。集团继续开发电动汽车共享解决方案,在印第安纳波利斯投入使用 Blueindy,意大利的 Bluetorino 也将很快加入其中。新蓝区 (Bluezones) 在非洲的贝宁、刚果和几内亚兴起,它们是为当地居民提供电力、饮用水、互联网和其他多种服务(如年轻企业家孵化器)的生活空间。所有这些用于个人或集体出行以及智能使用和储存电力的创新都是对可持续发展和能源储存问题的回答,这些问题已成为公民、城市和政府面临的主要问题。集团历史悠久的业务线——运输和物流,也预见到了其活动中不可避免的技术趋势以及气候变化的影响。因此,我们在勒阿弗尔的物流枢纽项目在“COP21 解决方案”博览会上被评为运输和物流领域的“创新和有效”解决方案。今年的第二项重要活动是组织运输和物流活动。在日益增长的需求中
集团各部门均在考虑各业务单位具体情况的同时,运用这一战略愿景,确保行动部署一致、可持续。集团业务领域的多样性反映在其企业社会责任政策中:> 由于运输和物流部门的特殊性质和地理位置,该部门制定了特别严格的人力资源和健康安全政策。员工是该业务领域成功的关键;> 通过 Vivendi,通讯部门的战略以人权为基础,特别是促进文化多样性、知识共享、支持年轻人和保护个人数据;> 电力存储和解决方案部门的发展基于一项投资和创新政策,该政策致力于对抗污染和支持能源转型。集团的优先事项(所有子公司都一样)包括降低与商业道德相关的风险、确保遵守人权、实施支持与员工建立可持续关系的就业政策、投资开发创新和环保的产品和服务,以及成为其所在地区经济和社会发展的重要合作伙伴。—
[C125] G. Eichler、B. Seyoum、K.-L. Chiu 和 L. P. Carloni。MindCrypt:大脑作为基于 SoC 的脑机接口的随机数生成器。在国际计算机设计会议 (ICCD) 论文集,第 70-77 页,2023 年 11 月。[C124] G. Tombesi、J. Zuckerman、P. Mantovani、D. Giri、M. Cassel Dos Santos、T. Jia、David Brooks、G.-Y。Wei 和 L. P. Carloni。SoCProbe:基于异构 NoC 的 SoC 的组合后硅验证。在国际片上网络研讨会 (NOCS) 论文集,第 1:1–1:6 页,2023 年 9 月。[C123] B. Stitic、L. Urbinati、G. Di Guglielmo、L. Carloni 和 M.R.Casu。增强的机器学习流程,用于微波传感系统检测食品中的污染物。在 IEEE 农业食品电子会议 (CAFE) 上,2023 年 9 月。[C122] N. Zeng、T. Jung、M. Sharma、G. Eichler、J. Fabbri、R. J.Cotton、E. Spinazzi、B. Youngerman、L. Carloni 和 K. L. Shepard。一种无线、机械柔性、25 µ m 厚、65,536 通道硬膜下表面记录和刺激微电极阵列,带有集成天线。在 VLSI 电路研讨会上,第 1-2 页,2023 年 6 月。[C121] F. Gao, T.-J.Chang, A. Li, M. Orenes-Vera, D. Giri, P. Jackson, A. Ning, G. Tziantzioulis, J. Zuckerman, J. Tu, K. Xu, G. Chirkov, G. Tombesi, J. Balkind, M. Martonosi, L. Carloni 和 D. Wentzlaffi。DECADES:67mm2、1.46TOPS、55 Giga 缓存一致的 64 位 RISC-V 指令/秒、异构多核 SoC,包含 109 个图块,包括加速器、智能存储和 12nm FinFET 中的 eF-PGA。在论文集定制集成电路会议 (CICC) 中,第 1-2 页,2023 年 4 月。[C120] K.-L. Chiu、G. Eichler、B. Seyoum 和 L. P. Carloni。EigenEdge:使用 risc-v 和硬件加速器在边缘实时执行软件。在网络物理系统和物联网周刊中,第 1-6 页,2023 年 5 月。[C119] B. Seyoum、D. Giri、K.-L. Chiu、B. Natter 和 L. P. Carloni。PR-ESP:用于设计和编程部分可重构 SoC 的开源平台。在欧洲设计、自动化和测试会议 (DATE) 的论文集,第 1-6 页,2023 年 3 月。[C118] T. Tambe、J. Zhang、C. Hooper、T. Jia、P. N. Whatmough、J. Zuckerman、M. Cassel、E. J. Loscalzo、D. Giri、K. L. Shepard、L. P. Carloni、A. M. Rush、D. Brooks 和 G.-Y。魏。在 ISSCC 技术论文摘要中,第 342-343 页,2023 年。魏,12nm 18.1TFLOPs/W 稀疏变换器处理器,具有基于熵的早期退出、混合精度预测和细粒度电源管理。[C117] B. Seyoum、D. Giri、K.-L. Chiu 和 L. P. Carloni。用于设计和编程部分可重构异构 SoC 的开源平台。嵌入式系统编译器、架构和综合国际会议记录 (CASES),第 25-26 页,2022 年 10 月。[C116] T. Jia、P. Mantovani、M. Cassel Dos Santos、D. Giri、J. Zuckerman、E. J. Loscalzo、M. Cochet、K. Swaminathan、G. Tombesi、J. J. Zhang、N. Chandramoorthy、J.-D. Wellman,K. Tien,L.P. Carloni,K. Shepard,D. Brooks,G.-Y。
Constantine Y Bliokh 1,2,3,∗,Ebrahim Karimi 4,∗,Miles J Padget 5,Miguel A Alonso 6,7,Mark R 9,中国Zahedpour 10,Scott W Hancock 10, B Cork 15,Carlos-García16 MS,Haoran Ren 17,Yuri Kivshar 18,Mario G Silveirinha 19,No. Daniel Leykam 22 MSKAM 22 MSKAM 22,Daria A Smirnova 18,73,Rong 23,Bo Wang 23,24, Anatoly V Zayats,Francis Jie Ren 27,Alexander B Khanikaev 31,迈克尔摇摆18, 35,Idian Caminer 35,Filippo Cardan 36,Lorenzo Martyr
随着马来西亚进入2025年,该国的数据中心行业正在嗡嗡作响,这是由于人工智能(AI)采用(AI)的融合,超级评分者的强大投资以及战略政策框架所激发的。然而,美国作为主要数据中心中心的地位面临着泰国和越南等地区球员的挑战,他们渴望在利润丰厚的市场中占有一席之地。尽管有所增加,但马来西亚对新加坡的独特代表及其对基础设施的策略投资继续将其定位为东南亚数据中心繁荣的强大竞争者。Kenanga研究在其最近的报告中指出,新加坡仍然是该地区数据中心景观的领导者,其容量超过1.4吉瓦(GW),住房拥有70多个设施。 像Google这样的全球科技巨头已经向岛国致力于数十亿美元,进一步巩固了其作为超级标准枢纽的地位。 然而,由于土地有限和严格的可持续性政策,新加坡的扩张受到限制,为其邻国创造了机会。 “新加坡的数据中心已指定了300兆瓦(MW)的数据中心的能力,可以在绿色数据中心进行200MW,并保留了200MW,并补充说,对于马来西亚的战略成本和竞争性的成本增长,人们希望对马来西亚的溢出持续存在,预计马来西亚会持续存在。 马来西亚已成为数据中心投资的关键目的地。 在2021年至2023年之间,马来西亚批准了数据中心投资中令人难以置信的RM114.7ML。Kenanga研究在其最近的报告中指出,新加坡仍然是该地区数据中心景观的领导者,其容量超过1.4吉瓦(GW),住房拥有70多个设施。像Google这样的全球科技巨头已经向岛国致力于数十亿美元,进一步巩固了其作为超级标准枢纽的地位。然而,由于土地有限和严格的可持续性政策,新加坡的扩张受到限制,为其邻国创造了机会。“新加坡的数据中心已指定了300兆瓦(MW)的数据中心的能力,可以在绿色数据中心进行200MW,并保留了200MW,并补充说,对于马来西亚的战略成本和竞争性的成本增长,人们希望对马来西亚的溢出持续存在,预计马来西亚会持续存在。马来西亚已成为数据中心投资的关键目的地。在2021年至2023年之间,马来西亚批准了数据中心投资中令人难以置信的RM114.7ML。著名的项目,例如Johor的Princeton Digital Group(PDG)52MW绿色数据中心校园,强调了该国的吸引力。PDG强调了“高分标准占其业务的80%”,这反映了主要参与者利用马来西亚的Favourable条件的需求。这将该国定位为寻求范围性的高标准者而不会损害潜伏期敏感的操作的首选。
形成阶段代表了商业化的第一步(Grübler等,1999)。“技术推动”发生在这些早期阶段,在这些阶段,研发(R&D)投资用于支持新兴技术以提高其绩效并降低成本,从而使这些技术开始部署,尤其是在绩效通常比成本更重要的利基市场中。同时,利基市场提供“市场吸引力”,即一旦技术推动减少了现有技术与新兴技术之间的差距,对新技术的持续需求。 “技术推动”和“市场拉力”机制用于推动部署(Santhakumar等,2021; Wilson,2012; Wilson andGrübler,2011; Neij等,1997)。对新技术的持续需求。“技术推动”和“市场拉力”机制用于推动部署(Santhakumar等,2021; Wilson,2012; Wilson andGrübler,2011; Neij等,1997)。