拓扑光子状态为可靠的光操作提供了有趣的策略,但是,由于其复杂的模式剖面,使这些拓扑特征状态完全激发这些拓扑特征状态仍然具有挑战性。在这项工作中,我们建议通过超对称(SUSY)结构实现拓扑边缘状态的精确本本征。通过绝热地将SUSY伙伴转换为其主要拓扑结构,边缘模式可以通过简单的单位点输入完全激发。我们在电信波长中实验验证了我们在综合硅波导中验证我们的策略,显示了广泛的工作带宽。此外,进一步应用快捷方式到可绝化策略,以通过反设计方法来加快绝热泵工艺的速度,从而实现快速模式的发展并导致设备尺寸减小。我们的方法是普遍的,对基于拓扑的或复杂的本本型系统有益,范围从光子学和微波到冷原子和声学。
摘要 - 技术的预测已为Terahertz(THZ)频率范围打开了大门,该频率范围要在不同的领域应用于各种应用。未来的通信技术,尤其是6G,还将由于其较大的带宽具有实现高数据速率的能力,因此也将使用THZ频带。在对Terahertz传播介质的早期研究中出现了巨大的损失。至关重要的是,设计适当的波导,可以将THZ波有效地整合到系统中,并以最小的损失,并易于传输数据并克服自由空间损失问题。通信,传感和其他应用参数受传输损失的高度影响;因此,需要低传输损失和分散损失波导设计才能适当利用。在本文中,研究了在Terahertz频率范围内运行的不同类型的波导中传输损失减少的综述。还讨论了几类THZ波导的设计和实验设置,以最大程度地减少传输损失。审查研究表明,这些波导可能是未来6G通信的有希望的传输媒介。
摘要:本文提出了一种基于双SPP耦合用于亚波长限制的长距离混合波导。混合波导由金属基圆柱形混合波导和银纳米线组成。波导结构中存在两个耦合区,增强了模式耦合。强模式耦合使波导既表现出较小的有效模式面积(0.01),又表现出极长的传输长度(700 μm),波导的品质因数(FOM)可高达4000。此外,波导的横截面积仅为500nm×500nm,允许在亚波长范围内进行光学操作,有助于提高光电器件的小型化。混合波导的优异特性使其在光电集成系统中具有潜在的应用价值。
集成的光子芯片逐渐成为信息传输和处理的重要选择,其中集成密度将扮演与综合电路中见证的越来越重要的作用。迄今为止,在制管机上硅晶片已经与低串扰的密集整合做出了巨大的效果,尽管在新兴的二氯甲甲虫在启用锂岩岩(LNOII)平台中仍然非常具有挑战性。在这里,我们报告了一种利用Floquet-Mode-Index调制的策略,以实现宽带零串扰,对LNOI芯片的其他性能指标的影响最小。零串扰的潜在物理学归因于floquet quasienergy的崩溃,这是通过超速频道低cros刺传输的实验性验证的,其多余的损失低。此外,我们在紧凑的LNOI波导阵列中展示了宽带八通道光传输,与传统的波导阵列相比,宽带八通道阵列显示出优势。我们的工作是提高片上光子电路的集成密度的另一种方法,为有希望的LNOI平台中的密集波导应用开辟了不同的可能性。
带有光波导的分子发光材料在发光二极管,传感器和逻辑门中具有广泛的应用前景。但是,大多数传统的光学波导系统都是基于脆性分子晶体,该晶体限制了在不同的应用情况下的柔性设备的制造,运输,存储和适应。迄今为止,在同一固态系统中具有较高柔韧性,新型光学波导和多端口色调发射的光功能材料的设计和合成仍然是一个开放的挑战。在这里,我们已经构建了新型的零维有机金属卤化物(Au-4-二甲基氨基吡啶[DMAP]和DMAP),对于光学波导而言,弹性很小,损失系数很少。对分子间相互作用的理论计算表明,2分子晶体材料的高弹性是原始的,它是从其人字形结构和滑移平面的。基于2个晶体的一维柔性微脚架和Mn-Dmap的2维微板,具有多色和空间分辨光学波导的异质界面。杂合的形成机理是基于表面选择性生长,因为接触晶体平面之间的低晶格不匹配比。因此,这项工作描述了具有高灵活性和光学波导的基于金属壁的晶体异质结的首次尝试,从而扩展了用于智能光学设备(例如逻辑门和多路复用器)的传统发光材料的前景。
简介神经形态计算是指试图模仿大脑信号处理的信号的方式[1]。与基于具有两个分离的内存和处理单元并以顺序操作的von Neumann架构的传统计算机相比[2],大脑过程以并行方式[3,4]。,它在速度和能源效率方面提供了巨大的好处,因为数据传输是造成大部分功耗的原因。克服某些局限性的方法之一是开发可以改善信号处理的新算法[5,6],但是,它仍然需要在内存和处理器之间进行数据传输和限制其效率。在处理这些限制的过程中,在网络中可以实施的人工神经元和突触的开发中,付出了很多努力[1]。基于光子学,即,神经形态光子学,可用光子作为信号载体,以在网络的不同部分之间传递信息[7-12]。多亏了几乎无限的带宽,与标准CMOS技术的兼容性以及几乎为零的功耗,可以进行基本的矩阵乘法,与神经态电子相比,它可以提供巨大的改进。可以通过以光速度在单个波导上将多个信号列入多个信号来实现完整的并行性。同时,光权重可以提供计算的低延迟。通过将这些优点结合起来,至少与电子同行相比,至少有很少的数量级改善。但是,实现此类任务的实现需要仍缺失的新材料平台和低损失体系结构。氮化硅(SIN)是光子整合电路(PIC)技术的普遍材料,因为它与标准CMOS过程兼容[13,14]。它允许在单个芯片上进行具有成本效益的设备和电子和光子组件的协整。此外,与其他材料相比,基于SIN平台的光子设备的特征是对温度漂移的容忍度更高,光学损耗和较低的波长范围操作,较大的波长透明度和改善的串扰值[14]。已经被证明是一个适当的材料平台,用于实现神经网络,表明自由度增加的是设计线性神经元[8,9]。因此,SIN平台可以作为神经形态光子学中的路由层起关键作用[9]。
由于各种原因,超声导波与 NDE 和 SHM 的集成正在迅速发展。由于对结构的访问有限,并且只能从结构上的单个位置的传感器检查大面积区域,因此超声导波通常是解决问题的唯一方法。超声导波与更标准的超声体波检查非常不同,后者可以进行数百种测试模式,而体波只能进行两种检查模式,即纵向和剪切。大约 15 年前,随着导波检查的兴起,人们对其使用寄予厚望,但后来由于缺乏理论理解和建模分析所需的计算能力薄弱而受到阻碍。在从实验室到现场的技术转移过程中,我们经常遇到涂层、隐藏、埋藏结构和环境中的几何复杂性等诸多挑战。他们的许多问题现在已经得到克服,技术转移和产品开发正在迅速推进。导波创新在应用、灵敏度和穿透力方面令人惊叹。这些页面讨论了其中一些进步。
Los Alamos国家实验室是一项平权行动/均等机会雇主,由Triad National Security,LLC经营,为美国能源部国家核安全管理局根据合同89233218CNA000001运营。通过批准本文,出版商认识到,美国政府保留了不判有限定的免版税许可,以出版或复制已发表的此捐款形式,或者允许其他人出于美国政府的目的。洛斯阿拉莫斯国家实验室要求出版商根据美国能源部主持的工作确定这篇文章。Los Alamos国家实验室强烈支持学术自由和研究人员发表权;但是,作为一个机构,实验室并未认可出版物的观点或保证其技术正确性。
在本补充材料中,我们提供了更多细节来支持正文中提出的结果。在 SM1 节中,我们回顾了当波导模式具有带隙时光子介导相互作用可调谐性的物理起源。然后,在 SM2 节中,我们总结了变分量子本征求解算法的关键步骤(SM2 A),描述了所考虑的目标模型的属性(SM2 B),解释了文献中通常使用的不同假设的结构(SM2 C),详细介绍了我们用于获得正文结果的优化协议(SM2 D),并评论了其他可能用于对我们的结果进行基准测试的品质因数(SM2 E)。最后,在 SM3 节中,我们讨论了用于获得正文图 3 的误差模型的细节。还请注意,用于重现手稿结果的所有代码都可以在 https://github.com/cristiantlopez/Variational-Waveguide-QED-Simulators 中找到。
