抽象的慢性阻塞性肺疾病(COPD)是一种威胁生命的肺部疾病,是全球发病率和死亡率的主要原因。尽管尚未找到治疗疗法,但对反映疾病进展的生物标志物的永久监测对于有效管理COPD起着关键作用。对唾液等呼吸道流体的准确检查是一种有前途的疾病方法,可以预测其即将到来的疾病(POC)环境中的加剧。但是,对患者人口统计和医疗参数的同时考虑对于实现准确的结果是必要的。因此,机器学习(ML)工具可以在分析患者数据并为识别POC环境中识别COPD的全面结果中发挥重要作用。因此,这项研究工作的目的是实施ML工具,从表征COPD患者和健康对照的唾液样本及其人口统计信息中获取的数据以及POC识别该疾病的人口信息。为此,使用了介电常数生物传感器来表征唾液样品的介电特性,随后将ML工具应用于获得的数据进行分类。XGBoost梯度增强算法的高分类准确性和敏感性分别为91.25%和100%,使其成为COPD评估的有前途的模型。将来将该模型整合到神经形态芯片上,将来可以在POC中对COPD进行实时评估,低成本,低能消耗和高患者隐私。此外,在接近患者设置中对COPD的持续监测将使疾病加剧更好地治疗。
我在东北空间应用中心 (NESAC) 的实习机会是一次学习和职业发展的绝佳机会。因此,我认为自己是一个非常幸运的人,因为我有机会成为其中的一员。我也很感激有机会结识这么多优秀的人、科学家和专业人士,他们带领我度过了这段实习期。铭记前情,我借此机会向 NESAC 主任表示最深切的谢意和特别的感谢,尽管他工作非常繁忙,但他还是抽出时间听我讲课,并允许我在他们尊敬的组织开展我的项目。我必须向我的项目指导、NESAC 的科学家/工程师“SC” Anjan Debnath 爵士表示最深切的谢意。从提出主题到提供材料撰写本报告,Anjan 先生都提供了毫无保留的帮助和指导,并引导我一步一步完成我的项目。我要向所有为我提供完成本报告机会的人表示最深切的谢意。此外,我还要感谢 NESAC 工作人员发挥的关键作用,他们允许我使用所有必要的设备和必要的材料来完成任务。我认为这次机会是我职业发展的一个重要里程碑。我将努力以最佳方式运用所学技能和知识,并努力在未来加以培养。 ADITYA GAYAN UDIPTA BORDOLOI NIT Silchar NIT Silchar
在电信智能天线系统中,透镜可用于主波束聚焦、旁瓣抑制和波束切换目的 [1]。透镜具有各种各样的形状和材质,但介电损耗非常低。陶瓷在较高温度下具有良好的稳定性,并且其介电常数可以调整。同时,它也有一个缺点,那就是制造温度高,导致制造过程中的能耗高,从而增加了生产成本。室温制造法 (RTF) 发明后,锂钼氧化物 (Li 2 MoO 4 ,LMO) 陶瓷的水基悬浮液可以在室温下制造,而不必在 400 ◦ C 以上的温度下制造 [2]。它的相对介电常数为 5.1,在 9.6 GHz 时的损耗角正切值为 0.0035 [3, 4]。此外,已经展示了 4 GHz 下的 LMO 陶瓷贴片天线 [5]。在 LMO 混合物中添加不同的介电材料可以改变其介电性能。 Li 2 MoO 4 -TiO 2 复合材料在 9.6 GHz 时的相对介电常数为 6.7–10.1,损耗角正切值为 0.0011–0.0038,具体取决于其体积百分比 [6]。(1 − x )Li 2 MoO 4 - x Mg 2 SiO 4 在 9 GHz 时的介电常数为 5.05–5.3(未提及损耗角正切)[7]。3D 打印 LMO 在 9.6 GHz 时的介电常数为 4.4,损耗角正切值为 0.0006 [8],据报道,超低介电常数 LMO 复合材料的介电常数为 1.12,损耗角正切值为 0.002 [9]。LMO 复合材料的射频应用研究尚处于早期阶段。在本信中,制作了直径为 30 毫米的钼酸锂 (Li2MoO4,LMO) 空心玻璃微球 (HGMS) 复合材料和透镜,并在 Ku 波段用波导馈源进行了分析。
技术转让和工业接口部 (TTID)、PPG 空间应用中心 (SAC)、ISRO、Ambawadi Vistar、艾哈迈达巴德 - 380 015 电子邮箱:ttid@sac.isro.gov.in 传真:079-26915817 https://www.sac.gov.in/SAC_Industry_Portal
隐形传态是量子力学的一个基本概念,其重要应用在于通过量子中继节点扩展量子通信信道的范围。为了与现实世界的技术(如通过光纤网络进行安全量子密钥分发)兼容,这样的中继节点理想情况下应以千兆赫时钟速率运行,并接受 1550 nm 左右低损耗电信频段中的时间箱编码量子比特。本文表明,InAs-InP 液滴外延量子点的亚泊松发射波长接近 1550 nm,非常适合实现该技术。为了以千兆赫时钟速率创建必要的按需光子发射,我们开发了一种灵活的脉冲光激发方案,并证明快速驱动条件与低多光子发射率兼容。我们进一步表明,即使在这些驱动条件下,从双激子级联获得的光子对也显示出接近 90% 的纠缠保真度,与连续波激发下获得的数值相当。使用非对称马赫-曾德尔干涉仪和我们的光子源,我们最终构建了一个时间箱量子比特量子中继,能够接收和发送时间箱编码的光子,并展示出 0.82 ± 0.01 的平均隐形传态保真度,超过经典极限十个标准差以上。
轻型车载卫星天线是便携式、自对准卫星通信平台。该系统可以永久安装在车辆和其他可移动工作平台上,或与滑轨支架一起使用并放置在地面或其他表面上。部署非常简单,只需提供电源、连接电缆并按下“搜索”按钮即可,非常适合政府和军事机构使用,
在这项工作中,我们基于电信O波段中发出的Ingaas量子点(QD)开发和研究单光子源。量子设备是使用原位电子束光刻制造的,结合了热压缩键合,以实现背面金镜。我们的结构基于INGAAS/GAAS异质结构,其中QD发射通过减少应变层在1.3 L m处向电信O带红移。QD通过阴极发光映射预选的QD嵌入带有背面金镜的台面结构中,以提高光子萃取效率。在脉冲非共振润湿层激发下进行的光子自动相关测量在高达40 K的温度下进行,显示纯单光子发射,这使得设备使用Stirling Croimoolers兼容独立操作。使用脉冲P-shell激发,我们实现了单光子的发射,高光子抑制G(2)(0)¼0.0276 0.005,是(12 6 4)%(12 6 4)%(12 6 4)%的AS测量的(96 6 6 10)%和(96 6 10)%和相关的连接时间(212 6 25)的可见性(12 6 4)%。此外,结构显示出5%的提取效率,这与该光子结构的数值模拟所期望的值相当。我们设备的进一步改进将通过光纤维实现量子通信。
自从古列尔莫·马可尼发明无线电报以来,使用无线电波的技术已经彻底改变了我们的日常生活以及整个社会。只需看看人们随身携带的智能手机,就可以看出这项技术如何使我们受益。说到智能手机,5G(第五代移动通信系统)服务于今年在日本启动,研究机构已在制定超越 5G 甚至更先进系统的开发计划。太赫兹波段是一个几乎未开发的频带,现在受到了广泛关注。频率从 100 GHz 到 10 THz(换算成波长为 3 mm 到 30 μm),人们可能会问:我们为什么需要这么高的频率?此外,这个波段是如何研究和标准化使用的?为了寻找这些问题及更多问题的答案,我们采访了太赫兹技术研究中心主任 HOSAKO Iwao 和在同一中心从事标准化工作的小川宏世 (OGAWA Hiroyo)。
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2020 年 4 月 13 日发布。;https://doi.org/10.1101/2020.04.13.039081 doi:bioRxiv preprint
