世界经济论坛(WEF,2020年)的最新报告表明,全球经济的五种风险是环境起源。对于四个人口的威胁也有同样的可能性,这些威胁可能会产生最严重的影响。其中,气候变化及其后果位于顶部。如果我们想认真对待这些迹象,那么必要的能量过渡必须是快速而毫不留情的。为此,我们是否可以将大约70%的星球排除在部署可再生能源的可能性之外?这是指海洋和海洋所覆盖的地球数量,我们现在需要准备在能量计划中包括“蓝色能量”:潮汐,潮流,波浪风,波浪,波浪,波浪(陆上和肖尔),盐水和热梯度,盐水和热梯度,甚至是海洋藻类生物群。欧洲是这一领域的前跑者,绿色交易可能会提供进一步的动力。最近,北海,北大西洋和英国通道是欧洲最有利的景点,但正如Pisacane等人所强调的那样。,不同解决方案的技术准备就可以扩展到地中海。尽管波浪,风,电流和潮汐通常比北欧的强烈强烈,但条件是有希望的,尤其是对于风和波浪能,后者的连续性和高可预测性。可行性,法律框架以及技术和环境挑战已在本研究主题的12篇论文中进行了研究。go效法。专注于海洋可再生能源技术的主要优势,劣势,机遇和威胁,考虑了几个方面:技术,环境,社会,经济和法律。
了解这些改进的标准载荷是否能对船舶能够遇到的最大波浪弯矩给出一个现实的近似值非常重要。但困难在于:什么是现实的?标准波浪是否应该代表船舶一生中可能遇到的最严酷的条件?当然不是,几乎不可能绝对地定义这样的载荷。只有少数迹象表明可用。Dalze118 在拖曳水池中创建了波浪系统,其产生的弯矩大小是标准波浪矩的三倍。Getz 表示,船舶长度的最高波浪高度符合 L/7.3 的观点,关键在于这些情况在物理上是否可能并不重要;重要的是它们发生的可能性是否很大。由于在该领域进行了大量研究,我们知道这种可能性极其微小。也许现在服役的所有船舶中,有一艘在其一生中会遭受一次相当于标准波浪力矩三倍的极端弯曲力矩。
摘要。由于光谱波模型计算成本高昂,风浪过程通常被排除在耦合地球系统模型之外,该模型需要解决空间和时间上波的频率和方向谱。地球系统模型中使用的现有均匀分辨率波浪建模方法无法恰当地表示从全球到沿海海洋尺度的波浪气候,这主要是因为沿海分辨率和计算成本之间的权衡。为了解决这一挑战,我们为 WAVEWATCH III (WW3) 模型引入了全球非结构化网格功能,该模型适合与美国能源部的能源百亿亿次地球系统模型 (E3SM) 耦合。新的非结构化 WW3 全球波浪建模方法可以在沿海地区提供更高的全球分辨率精度,但相对而言,均匀全球分辨率较低。这种新功能可以根据沿海应用的需要模拟物理相关尺度的波浪。
海上风能和波浪能是尚未开发的可再生资源。然而,这些资源的间歇性和高昂的能源成本对其大规模开发构成了一些重大挑战。尽管人们认为储能系统可以减轻或降低能源波动以支持可靠的电网,但所提出的解决方案进一步增加了资本支出。这主要是由于缺乏对海上可再生能源系统与储能系统的系统技术经济评估。此外,先前文献中报道的海上风能和波浪能系统的整合显示出许多好处,例如电力平滑和成本降低。本文研究了海上风能和波浪能的间歇性及其可调度性,并提出了一种等效的储能系统,以实现与风能和波浪能组合系统相同的能源波动水平。这为海上能源农场的电力平滑性能和能源供应的稳定性提供了透彻的了解。通过高保真成本模型对独立的海上风电系统、带有储能系统的风力涡轮机和混合动力装置系统进行了经济评估和比较。此外,研究还针对全球多个地点的三种系统配置的敏感性,这些地点被选定用于应对典型的风和海况。结果表明,与其他两种系统配置相比,混合风能和波浪能发电系统在降低能源波动性和提高海洋能源调度能力方面具有优势,同时成本极具竞争力。此外,该研究旨在为开发商、投资者和政策制定者在开发海洋可再生能源系统的前期规划阶段提供指导和支持。
ClassNK 发布了新的 PrimeShip-GREEN/MinPower 软件。PrimeShip-GREEN/MinPower 的开发旨在帮助船厂遵守 MARPOL 附则 VI 修正案的 EEDI 要求,通过计算符合 IMO 2013 年临时指南的最低推进功率要求来确定最低推进功率,以保持船舶在不利条件下的机动性。为了评估最低推进功率要求,应根据船舶线型计算不规则波浪中的附加阻力。由于计算波浪中的附加阻力可能很困难,特别是在初始设计阶段,ClassNK 开发了一个简化公式来计算波浪中的附加阻力,仅使用主要船舶规格等基本信息,使设计师能够轻松
ClassNK 发布了新的 PrimeShip-GREEN/MinPower 软件。PrimeShip-GREEN/MinPower 的开发旨在帮助船厂遵守 MARPOL 附则 VI 修正案的 EEDI 要求,通过计算符合 IMO 2013 年临时指南的最低推进功率要求来确定最低推进功率,以保持船舶在不利条件下的机动性。为了评估最低推进功率要求,应根据船舶线型计算不规则波浪中的附加阻力。由于计算波浪中的附加阻力可能很困难,特别是在初始设计阶段,ClassNK 开发了一个简化公式来计算波浪中的附加阻力,仅使用主要船舶规格等基本信息,使设计师能够轻松
Lende一直在研究由Wave Energy Scotland赞助的项目,以测试混凝土作为波能转化器(WEC)中的关键材料的适用性。Arup研究了两种设计:由AWS Ocean Energy开发的Archimedes Wave Wave秋千,以及来自Carnegie Clean Energy的CETO。波浪摆动具有大型浮标或浮子,它随波浪的上下移动,并有效地将大活塞驱动在非移动的底座上,该底座束缚在海床上。液压电动机将这种线性运动转换为旋转运动,然后驱动发电机。ceto - 以希腊女神的海怪女神命名 - 是一个20m直径的圆盘形状,布置在表面下面漂浮,可以捕获波浪和电力液压泵的轨道运动,并在岸上发电。
海洋可再生能源技术,即波浪能和潮汐能,有望成为补充现有可再生能源的清洁能源。拜登政府通过其《海洋气候行动计划》表示,计划“迅速、负责任地推进海洋能源技术的商业化,这些技术可将波浪、潮汐、洋流和其他海洋能源转化为能源”。1 该行动计划旨在加强海洋可再生能源的研究、教育和劳动力发展,并从环境正义的角度进行。随着这些技术的进步,至关重要的是,在部署这些技术时,必须充分了解环境和社会影响,并结合适当的缓解措施以降低风险。如果负责任地使用,波浪能和潮汐能可以成为有效的额外清洁海洋能源,有助于实现公正的能源转型,特别是对于偏远和农村沿海社区。
经过 20 年的研发投入,欧洲在海洋能领域一直保持着关键的竞争优势。过去 10 年,欧盟国家和私营部门已在海洋能研究和试点项目上投资了 40 多亿欧元。降低成本是海洋技术的关键,欧盟已通过战略能源技术计划 5 为未来十年设定了这一目标。这项投资导致欧洲市场竞争激烈,各大公司都试图将其海洋涡轮机或波浪能转换器概念推向大规模生产。从这个意义上讲,潮汐能行业似乎是最为成熟的,它推出了首个受益于购电协议的商业项目。然而,波浪能行业正紧随其后,测试原型以应对不同的欧洲沿海波浪条件 6 。
MARES 方法 xviii 1 200 公里范围内陆上和海上风速的全球概览 27 距岸上 100 米海拔高度 2 印度尼西亚为新加坡供电的 2.2 千兆瓦浮动太阳能 29 3 全球潮差分布 30 4 潮汐拦河坝示意图 (a) 和拉朗斯潮汐发电厂 (b) 31 5 潮汐装置 31 6 年平均波浪能的全球分布 32 7 世界海温梯度图 33 8 海洋热能转换潜力和发电厂地图 34 9 盐度梯度逆电渗析过程 35 10 盐度梯度压力减缓渗透过程 36 11 全球洋流 37 12 IHI 深海洋流演示涡轮机,100 千瓦 38 13 西澳大利亚海岸并网波浪发电站 41 14 直布罗陀波浪能发电设施 42 15 浮动式海上风电设施 43 16 海洋热能转换设施概念设计 44 17 Nova Innovation 的潮汐阵列 45 18 净零情景下的海洋发电,2000-2030 51 19 氢源 53 20 ABL 集团设计的氢动力船舶的首批效果图 58 21 氢动力 65 吨港口拖船概念图 58 22 东南亚具有可再生能源微电网潜力的岛屿位置 61 23 混合浮动风能和波浪平台 62 24 混合波浪、风能和太阳能设备 63