一维粒子模拟 (PIC) 用于分析新视野号绕冥王星太阳风 (SWAP) 仪器在距离太阳约 34 天文单位处观测到的行星际激波上游区域测得的能谱。使用单个种群模拟不同的太阳风离子 (SWI) 和拾取离子 (PUI) 种群,我们可以清楚地识别出每个种群对全球能谱的贡献。强调了激波前沿倾斜度在沿磁场流回远离前沿的上游区域的 PUI 形成中的重要作用。在本模拟中可以很好地恢复 SWAP 实验测得的能谱。详细分析表明:(1) 能谱的最高部分主要由回流的 PUI-H + 和 PUI-He + 形成; (2) 能谱的中间部分由太阳风 SW-H + 和 SW-He 2+ 入射离子组成,这些离子叠加在 PUI-H + 粒子群上,(3) 低能范围由入射 PUI-H + 组成。使用 PUI-H + 粒子群的初始填充壳分布(而不是零厚度壳),可以提高实验结果与模拟结果之间的一致性,因为这会强烈影响光谱的低能部分。这意味着 PUI-H + 离子在日光层中首次被拾取后,有足够的时间扩散到壳分布并填充壳分布,这表明随后的冷却对全球能谱有重要影响。
摘要 动力输出装置 (PTO) 是波浪能转换不可或缺的一部分,其设计过程并非易事。更好的 PTO 以及为各种应用选择和设计 PTO 架构的更好流程将有利于帮助为蓝色经济提供动力的设备,因为它们可以减少在 PTO 设计上花费的时间和金钱,并提高这些设备的整体能量捕获性能。本文记录了小型浪涌型波浪能转换器 (WEC) 的 PTO 选择过程,旨在为未来的 PTO 选择过程提供参考。在 WEC-Sim 中评估了三种 PTO 架构:液压止回阀 PTO、液压主动阀 PTO 和直接电动 PTO。构建了每个 PTO 的简单模型。由于最初没有小型设备的模型,因此在大型设备上模拟 PTO。使用弗劳德缩放法缩小结果,并与直接模拟小规模模型的结果进行比较。由于这项工作尚处于设计阶段的早期,需要对 PTO 选项进行粗略研究,因此我们做出了严格的假设。具体而言,我们将研究控制的有效性以及能量转换的效率。但是,能量捕获只是考虑的一部分;在选择 PTO 时还需要考虑物流问题。例如,大型 WEC 的组件非常大且昂贵,因此定制 PTO 组件可能有意义,但小型 WEC 将从现成的可用性中受益,因为定制成本将是小规模部署总资本成本的很大一部分。潜水式现成组件对于液压 PTO 来说更容易采购。由于高效的控制、高效的能量转换以及海洋级组件的可用性,为这种小型浪涌型 WEC 选择了主动阀液压 PTO。
摘要:本文提出了一种基于互连模型的模型预测控制(MPC)方法,以最大程度地利用波浪能转换器(WEC)阵列提取的海浪能。在提出的方法中,应用正式均匀的互连模型来表示由任意数量的WEC组成的阵列的动力学,同时考虑了所有WEC设备之间的流体动力相互作用。首先,WEC设备及其流体动力相互作用是在一个相互联系的模型中表示的,该模型描述了各种WEC阵列的网络动力学,其WEC设备的不同空间几何布局部署在SEAFELD中。第二,基于提出的模型,采用MPC方法来实现对WEC阵列的协调控制,以在浮标位置和控制力的约束下提高其能量转化效率。第三,开发了一个硬件(HIL)平台来模拟WEC阵列的物理工作条件,并在平台上实现了提出的方法来测试其性能。测试结果表明,使用互连模型的拟议的MPC方法比经典MPC方法具有更高的能量收获效率。
摘要:我们利用 2019 年 5 月至 6 月 30 天内具有真实大气强迫和背景环流的全球 1/25 8 混合坐标海洋模型 (HYCOM) 模拟研究了风致近惯性波 (NIW) 的产生、传播和消散。计算了总场的时间平均近惯性风能输入和深度积分能量平衡项,并将场分解为垂直模式以区分 NIW 能量的辐射和(局部)耗散分量。只有 30.3% 的近惯性风输入投射到前五个模式上,而前五个模式中的 NIW 能量之和占总 NIW 能量的 58%。几乎所有深度积分的 NIW 水平能量通量都投射到前五种模式上。NIW 模式的耗散和衰减距离的全球分布证实,低纬度是高纬度产生的 NIW 能量的汇聚点。发现 NIW 能量的局部耗散部分 q 局部 在整个全球海洋中是均匀的,全球平均值为 0.79。水平 NIW 通量从具有气旋涡度的区域发散,并汇聚在具有反气旋涡度的区域;也就是说,反气旋涡流是 NIW 能量通量的汇聚点 (特别是对于较高模式而言)。大多数未投射到模式上的残余能量在反气旋涡流中向下传播。全球近惯性风能输入量在30天内为0.21TW,其中只有19%传输到500米深度以下。
形成阶段代表了商业化的第一步(Grübler等,1999)。“技术推动”发生在这些早期阶段,在这些阶段,研发(R&D)投资用于支持新兴技术以提高其绩效并降低成本,从而使这些技术开始部署,尤其是在绩效通常比成本更重要的利基市场中。同时,利基市场提供“市场吸引力”,即一旦技术推动减少了现有技术与新兴技术之间的差距,对新技术的持续需求。 “技术推动”和“市场拉力”机制用于推动部署(Santhakumar等,2021; Wilson,2012; Wilson andGrübler,2011; Neij等,1997)。对新技术的持续需求。“技术推动”和“市场拉力”机制用于推动部署(Santhakumar等,2021; Wilson,2012; Wilson andGrübler,2011; Neij等,1997)。
抽象可再生能源收集是当今科学家和研究人员的最吸引人之一。到目前为止,已经采取了许多从海浪中获得能量的策略。由于海洋的不可预测性质,在真正的海洋环境中设计和安装大多数这些能量收割机是很复杂的。任何波能量收集器的有效利用和可持续性都依赖于其在不可预测的偶尔波浪中的多功能性,最大能量提取的环境能力以及击中经济障碍。本文分享了有关波能转换器的类型,其工作,比较和设计波能转换器时要考虑的参数的讨论。它还共享了有关波动能量转换器设计及其转换可能性的各种论文收集的信息。关键字:波能转换器,海浪,波能,设计,比较。
起伏波浪能转换器 (WEC) 是点吸收器波浪能转换器的一种典型类型,具有较高的能量转换效率,但受粘性效应的影响很大。众所周知,此类波浪能转换器的底部形状对粘性起着重要作用,因此详细的定性研究至关重要。本文对底部形状对起伏波浪能转换器运动响应和能量转换性能的影响进行了数值研究。该数值模型基于势流理论建立,并在频域中进行粘性校正。考虑了底部为平底、锥形和半球形且位移相同的圆柱形波浪能转换器。研究发现,直径吃水比 (DDR) 较大的波浪能转换器受到的粘性效应相对较小,并能在更宽的频率范围内实现有效的能量转换。在DDR相同的情况下,平底的粘性效应最显著,其次是90°锥底和半球底;DDR较小时,半球底的能量转化性能最好;同样,DDR较大时,半球底和90°锥底的浮子的能量转化性能较好,平底的浮子最差。
摘要:从海洋中吸收可用形式的能源的波浪代表着一个有吸引力的挑战,在大多数情况下,这涉及可靠,有效和成本效率的功率采取的机制的波动和整合。在进度的各个阶段,为了评估波浪能设备,进行实验测试很方便,以便于及时考虑到小规模的功率占用机制的现实行为。要成功复制和评估功率接管,需要实施良好的实践,以正确扩展和评估功率接管机制及其行为。本文旨在探索和提出解决方案,这些解决方案可用于在实验研究期间重现和评估功率接管元素,即实验性设置的增强,校准实践和误差估计方法。一系列有关如何实际组织和进行实验的建议,并涵盖了三个案例研究。发现,尽管特定的选项可能严格取决于技术,但各种建议都可以普遍适用。
据报道,超过特定能量阈值的脉冲微波会在动物模型中造成脑损伤。造成脑损伤的实际物理机制尚无法解释,而这些损伤的临床现实仍存在争议。本文提出了脉冲微波可能通过将微波能量转换为脑水中的破坏性声子来损伤脑组织的机制。我们已经证明,低强度爆炸冲击波可能会在脑组织中引发声子激发。在这种情况下,脑损伤发生在纳米级亚细胞水平,这是根据脑水中声子相互作用的物理考虑所预测的。声子机制还可以解释原发性非撞击性爆炸引起的轻度创伤性脑损伤 (mTBI) 与最近在美国大使馆人员中观察到的可能由于定向射频辐射而导致的不明原因脑损伤的临床和成像结果之间的相似性。我们描述了实验以阐明脉冲微波可能损伤脑组织的机制、射频频率和功率水平。纳米级脑爆炸损伤的病理记录已得到实验支持,即使用透射电子显微镜 (TEM) 在没有肉眼或光学显微镜发现的情况下,证明了纳米级细胞损伤。需要进行类似的研究来更好地定义脉冲微波脑损伤。根据现有发现,临床诊断低强度爆炸和微波引起的脑损伤可能需要扩散张量成像 (DTI),这是一种专门的水基磁共振成像 (MRI) 技术。