4) Scheffer IE、Berkovic S、Capovilla G 等。ILAE 癫痫分类:ILAE 分类和术语委员会立场文件。癫痫 2017;58:512-21。5) Gibbs FA、Gibbs EL。脑电图图集。第 1 卷:方法和对照。马萨诸塞州雷丁:Addison-Wesley,1951 年。6) Yoshida Harumi。应用等电位脑电图对小儿脑电图发育的研究。 脑电图和肌电图 1984 ; 12 : 248-60。7) Yoshinaga H, Koutroumanidis M, Kobayashi K, et al. Panayiotopoulos 综合征的脑电图偶极子特征。癫痫 2006 ; 47 : 781-7。8) Seeck M, Koessler L, Bast T, et al. IFCN 的标准化脑电图电极阵列。临床神经生理学 2017 ; 128 : 2070-7。9) Otsubo H, Sharma R, Elliott I, Holowka S, Rutka JT, Snead OC 3rd. 通过侵入性监测硬膜下电极确认患有右额中央癫痫的青少年的两个脑磁图癫痫灶。癫痫1999;40:608-13。10) Shiraishi H、Ahlfors SP、Stufflebeam SM 等。比较三种用脑磁图定位发作间期癫痫样放电的方法。J Clin Neurophysiol 2011;28:431-40。11) Kobayashi K、Akiyama T、Oka M、Endoh F、Yoshinaga H。West 综合征患者在高峰失常期间出现快速(40-150 Hz)振荡风暴。Ann Neurol 2015;77:58-67。12) Kobayashi K、Watanabe Y、Inoue T、Oka M、Yoshinaga H、Ohtsuka Y。儿童睡眠诱发的电癫痫持续状态中头皮记录的高频振荡。癫痫2010;51:2190-4。13) Cao J,Zhao Y,Shan X,等。基于脑电图记录的大脑功能和有效连接:综述。Hum Brain Mapp 2022;43:860-79。14) Willett FR,Avansino DT,Hochberg LR,Henderson JM,Shenoy KV。通过手写实现高性能的脑到文本通信。Nature 2021;593:249-54。15) Jing J,Sun H,Kim JA,等。脑电图解释过程中癫痫样放电专家级自动检测的开发。JAMA Neurol 2020;77:103-8。16) Kobayashi K,Shibata T,Tsuchiya H, Akiyama K. 基于人工智能的儿科头皮脑电图癫痫放电检测:一项初步研究。Acta Med Okayama 2022;76:617-24。17)Scheffer LK、Xu CS、Januszewski M 等。成年果蝇中枢脑的连接组和分析。Elife 2020;9:e57443。18)Cutsuridis V、Cobb S、Graham BP。海马 CA1 微电路模型中的编码和检索。海马 2010;20:423-46。19)Kobayashi K、Akiyama T、Ohmori I、Yoshinaga H、Gotman J。动作电位导致用远离神经元的电极记录的癫痫高频振荡。临床神经生理学2015;126:873-81。
超流体是一种迷人而奇特的物质状态,源于极低温度下的量子效应。超流体是一种液体,与传统流体的区别在于没有分子粘性。因此,低速穿过它的物体不会受到任何阻力。超流体的例子有 3He 和 4He、由稀碱性气体制成的玻色-爱因斯坦凝聚体 (BEC)、光学非线性系统中的光以及中子星的核心。超流体的应用范围从冷却超导材料和红外探测器到冷原子和湍流的纯基础研究。超流体湍流中最明显的量子效应是量子涡旋的存在。这种涡旋就像原子龙卷风,具有量化的循环。在 3He 和 4He 以及原子 BEC 等系统中,量子涡旋表现为流体动力学涡旋,重新连接和重新排列其拓扑结构。
发表的论文,演讲结果:(国际会议的论文)•Kouki Otuka,Shingo Haruna,Yasumasa hasegawa,Hirono Kaneeyasu,“自旋敏感性和野外诱导的非独立超级负责性手性稳定性”,JPS。proc。:第29届低温物理国际会议论文集(LT29)38(1)011058-1-6(2023)。(由国内研究协会等发表的论文等)•iWamoto mutsuo,Isai Kouki,Haruna Shingo,Haruna Shingo,Kaneyasu Hirono,“连接系统中不均匀超导性的磁场引起的磁场引起的历史现象,”,由日本物理学学会提出,”•Haruna Shingo,Ogita Saiki,Nomura Takuji,Kaneyasu Hirono,“通过顶点校正UTE2扰动的超级传导稳定,UTE2中的现场排斥,”,日本物理学学会的收听摘要78(2)(2023)(2023)。(其他)•Koki Doi,Mutsuki Iwamoto,Shingo Haruna,Hirono Kaneeyasu,“超导体交界处的野外诱导的手性状态的滞后”,第10个国际f-召开的国际工场,关于F-Electrons的双重性质(Percter Rectorns off-Electrons tector)。
报告的评估是由威尔士公共卫生的招标过程资助的。由斯旺西大学(Swansea University)领导的斯旺西,阿伯里斯特威斯大学(Aberystwyth)和班戈大学(Aberystwyth)和班戈大学(SABU)的研究联盟被授予该合同。合同开始日期是2022年1月和2023年3月结束日期。本报告和支持幻灯片集代表了2023年6月与资助人一致的最终可交付成果。作者负责所有数据收集,分析和解释以及写作工作。作者参加了与AWDPP团队和威尔士公共卫生研究与评估部门成员的月度会议,目的是报告评估的进度。临时调查结果仅在2023年3月提出的报告的初稿中提供给筹款人和AWDPP团队。威尔士公共卫生和AWDPP的代表在两轮审查中对这份报告以及我们的公共贡献者发表了评论。我们要感谢审稿人对这些迭代草案的建设性评论,作者已经阅读了这些迭代,并在此最终报告的制作中适当容纳了这些迭代。该最终报告代表了作者对所有威尔士糖尿病预防计划(AWDPP)的独立评估。本报告中表达的观点和观点是作者的观点,不一定反映了AWDPP团队和组成委员会的观点和观点,NHS WALES大学健康委员会或威尔士公共卫生。利益声明。SABU财团作者宣称他们没有竞争利益。报告中提供的任何逐字行情都是参与评估的参与者的观点和观点,不一定代表NHS威尔士大学健康委员会或公共卫生委员会的作者,AWDPP团队和组成委员会的观点和意见。L Kosnes(直到01.10.2022),P Anderson,S Harris和D Fitzsimmons是健康和护理经济学Cymru(HCEC)的成员,他支持这些人写原始招标(LK,PA,PA,SH和DF)的时间(LK,PA,SH和DF),并支持写作(PA,SH,SH,SH,DF)。HCEC由威尔士的健康和护理研究由威尔士政府资助。致谢我们要感谢以下时间给我们的评估的时间和支持:
基于变压器的模型已在包括图像超级分辨率(SR)在内的低级视觉任务中取得了显着的结果。但是,在获得全球信息时,基于不重叠的窗口中依赖自我注意的早期aperach遇到了挑战。为了激活全球更多输入像素,已经提出了混合注意模型。此外,通过仅将像素的RGB损失(例如L 1)降至最低而无法捕获基本的高频降低,训练不足。本文提出了两种贡献:i)我们引入了卷积非本地稀疏注意(NLSA)块,以扩展混合变压器体系结构,以增强其接受场。ii)我们采用小波损失来训练变压器模型,以提高定量和主观性能。虽然先前已经探索过小波损耗,但在基于训练变压器的SR模型中显示了它们的力量是新颖的。我们的实验结果表明,所提出的模型在各种基准数据集中提供了状态的PSNR结果以及出色的视觉性能。
随着空间数据流量的不断增加,空间光通信受到越来越多的关注,作为持续开发高速光学空间网络努力的一部分,尼康和JAXA一直在开发用于调制连续波信号的单横模10 W保偏Er/Yb共掺光纤(EYDF)放大器。我们已经完成了工程模型(EM)的开发,并计划在2024年作为国际空间站光通信系统的一部分演示该放大器。EM放大器具有三级反向泵浦结构,带有抗辐射的EYDF。它还包括泵浦激光二极管和功率监控光电二极管以避免寄生激光,这两者都已被证实具有足够的抗辐射能力,以及控制驱动电路。整体尺寸为300毫米×380毫米×76毫米,重6.3公斤。在标准温度和压力条件(STP:室温,1 个大气压)下,当信号输入为 -3 dBm 时,EM 放大器在总泵浦功率为 34 W 时实现了 10 W 的光输出功率。总电插效率达到 10.1%。在 STP 下,放大器在 10 W 下实现了 2000 小时的运行时间。我们进行了机械振动测试和工作热真空测试,以确保放大器作为太空组件的可靠性。在工作温度范围的上限和下限 ± 0 和 + 50 °C 下,输出功率和偏振消光比 (PER) 分别为 > 10 W 和 > 16 dB,而放大增益或 PER 没有任何下降。