抗菌素抵抗(AMR)构成了关键的全球健康威胁,使全球感染管理变得复杂。关于世界卫生组织(WHO)在2019年释放的抗生素抗药性患病率的数据导致127万人死亡(Murray等,2022; Who,2023)。此外,世界银行估计,到2050年,AMR的经济影响可能会损失高达1万亿美元的医疗保健费用,而到2030年,国内生产总值(GDP)损失了3.4万亿美元(Jonas等人,2017年)。迫切需要发现新药替代耐药性抗生素已变得越来越重要。最大的新抗生素生产商来源之一来自土壤,其中99%的微生物物种。抗菌化合物是由土壤中的微生物产生的,由于传统培养技术的局限性,这些化合物在实验室中通常仍然无法培养,而传统培养技术无法复制微生物的自然栖息地(Choi等,2015; Bhattacharjee,2022222)。具有获取新抗生素剂的巨大潜力的土壤类型是泥炭土(Kujala等,2018; Liu等,2022; Atapattu等,2023)。泥炭土包含富含养分的有机沉积物,这些养分支持微生物生长和多样性(Nawan and Wasito,2020)。必须利用泥炭土中丰富的微生物含量来开发新的抗生素。当前的微生物培养技术通常仅限于微生物的一部分,从而限制了二级代谢产物的分离。克服这些局限性需要创新的方法来培养产生抗生素的微生物,这些微生物在实验室条件下仍然无法养活。未经培养的土壤技术(UST)或原位孵育是最新的发展之一,涉及使用环境中存在的自然生长因子进行培养(Berdy等,2017; Chaudhary等,2019)。
在本指南及其相应的视频中,我们演示了如何在现场取泥炭核并描述如何获得碳值。由于整个加拿大的土壤类型大量多样性,您的特定地点所需的工具可能会有所不同。有关潜在替代技术的更全面列表,请参阅Bansal等。(2023)和蓝色碳手册(2023)。请确保事先计划实验室分析,以确保收集的数据符合项目的最终目标。可以在文档“补充指南:实验室分析”文档中找到有关用于实验室分析的处理样品的详细信息。与实验室联系,团队将与他们合作,看看他们是否有任何特定要求。请注意,这些准则特定于收集图中的现场数据,并且可能必须根据研究区域的大小来调整样品的特定图尺寸和样本数量。
多糖(纤维素和半纤维素),蛋白质,酚类木质素和果胶的量和排列,部分构成植物组织,部分决定了其衰减速率。富含木质素和/或贫穷的组织已被描述为从生化的恢复,导致缓慢的衰减率。尽管有争议的有机物在具有矿物质颗粒的土壤中存储的机制,但在有机泥炭土壤(HASTOSOLS)中,生化顽固症仍然鲜为人知。为了研究泥炭植物在泥炭土中形成的作用,我们表征了10种物种的生化成分,并检查了三个泥炭地生态系统中土壤中成分的持久性至150 cm的深度。我们假设来自Hummock微型型物种的生化结构成分和内聚力比空心的物种更多。生化成分的相对比例在植物材料和泥炭土的前10厘米之间发生了明显变化,这表明分解发生在泥炭土壤表面,但此后生化成分的相对比例并没有明显地变化至150 cm深。在生化成分中有几种差异,这些成分区分了霍姆克物种与空心物种的最深深度采样。尽管期望木质素样成分的持久性,但可溶性和离子结合的果胶化合物的持久性令人惊讶,因为这些生物聚合物被认为很容易分解。我们的发现表明,除了经常引用的酚类木质素样成分外,泥炭,特定多糖和果胶的结构成分持续存在于泥炭土壤中,并且不应忽略泥炭型生态系统中的碳动态。
