摘要。恢复排水和提取的泥炭地可能会将其返回到二氧化碳(CO 2)下沉量,从而充当显着的气候变化缓解。ever,恢复的站点是否会保留下沉或切换到气候变化的来源是未知的。因此,我们调整了CoupModel,以模拟生态系统CO 2频道以及恢复的沼泽的相关影响因子。研究地点是加拿大东部的泥炭地,被提取了8年,并在恢复前离开了20年。与净生态系统交换(NEE),表面能量,土壤温度前纤维和地下水位深度数据的涡流协方差测量的3年(代表14-16岁)相比,对模型输出进行了第一次评估。进行了灵敏度分析,以评估所含有的CO 2倍数对新生长苔藓的厚度的响应。然后使用经过验证的模型来评估对气候强迫变化的敏感性。coupmodel重现了测得的表面能池,并与观察到的土壤温度,地下水位深度和NEE数据显示出很高的一致性。当将新生长的苔藓和Acrotelm的厚度从0.2到0.4 m更改时,模拟的NEE略有不同,但对于1 m厚的厚度显示出明显较小的吸收。在3个评估年中,模拟的NEE为-95±19GCM-2 Yr-1和-101±64GCM-2 Yr-1,范围从-219到 + 54GCM-2 yr-1,具有扩展的28年Cli-Mate数据。经过14年的恢复,泥炭地的平均CO 2摄取速率与原始地点相似,但年际变化较大,并且在干燥的年份中,重新存储的泥炭地可以切换回临时CO 2源。该模型预测CO 2吸收的中等减少,但如果泥炭地在生态和水文上恢复,则在未来的气候变化条件下仍然是合理的下沉。
《巴黎协定》旨在将全球温度升高到高于工业水平的2°C以下,最大为1.5°C。各方每五年提交全国确定的捐款(NDC),概述了2020年后的缓解和适应目标,目的是随着时间的流逝而增加野心。基于自然的解决方案(NBS)缓解气候变化正在在国家气候政策中越来越受欢迎,因为它们增强了天然碳汇,例如森林,草原和泥炭地,并以比技术度量低的成本提供了其他好处,例如生物多样性保护。nbs于2022年在联合国环境大会第五届会议上正式定义,以保护,保护,恢复,可持续使用和管理自然或修改的生态系统,同时应对社会,经济和环境挑战,同时为人类福祉提供益处,生态系统服务,恢复能力和生物多样性。2023年6月,德国为气候和生物多样性的基于自然的解决方案启动了联邦行动计划,“ AktionsprogrammymNatürlicherKlimaschutz(ANK)”,其中包括69种森林,泥炭地,泥炭地,沿海生态系统和农业土壤的森林,泥炭地,以减少温室气体的群体和其他造型库,并减少温室气体的组合。行动计划将NBS集成为缓解气候的NBS中,以支持实现国家气候和生物多样性减轻和适应目标的国家战略(BMUV 2023)。
2.2.9位于该地点1公里以内的LWS,Riccarton Moss(Crossbush)本地野生动植物站点(LWS)。LWS的南部边界位于场地的边缘(请参见第3卷,图5-2),其区域很小(大约1380 m 2,田地边缘)重叠,这将丢失在通行路线上的道路上。LWS被东艾尔郡理事会的环境状况报道称为浮游沼泽栖息地的一小部分,该栖息地已被排干但具有某些植物价值,并且在被洪水淹没时具有鸟类学的兴趣。现场工作表明发现沿路边缘不存在泥炭地(即站点内没有),书桌研究表明,整个LWS内没有泥炭或没有大量的泥炭。在LWS上的植被在空中图像上的出现表明,如果存在任何残留沼泽,则只能在该地点以北约110 m的现场中,因此由于拟议方案而不会直接影响沼泽。
抗菌素抵抗(AMR)构成了关键的全球健康威胁,使全球感染管理变得复杂。关于世界卫生组织(WHO)在2019年释放的抗生素抗药性患病率的数据导致127万人死亡(Murray等,2022; Who,2023)。此外,世界银行估计,到2050年,AMR的经济影响可能会损失高达1万亿美元的医疗保健费用,而到2030年,国内生产总值(GDP)损失了3.4万亿美元(Jonas等人,2017年)。迫切需要发现新药替代耐药性抗生素已变得越来越重要。最大的新抗生素生产商来源之一来自土壤,其中99%的微生物物种。抗菌化合物是由土壤中的微生物产生的,由于传统培养技术的局限性,这些化合物在实验室中通常仍然无法培养,而传统培养技术无法复制微生物的自然栖息地(Choi等,2015; Bhattacharjee,2022222)。具有获取新抗生素剂的巨大潜力的土壤类型是泥炭土(Kujala等,2018; Liu等,2022; Atapattu等,2023)。泥炭土包含富含养分的有机沉积物,这些养分支持微生物生长和多样性(Nawan and Wasito,2020)。必须利用泥炭土中丰富的微生物含量来开发新的抗生素。当前的微生物培养技术通常仅限于微生物的一部分,从而限制了二级代谢产物的分离。克服这些局限性需要创新的方法来培养产生抗生素的微生物,这些微生物在实验室条件下仍然无法养活。未经培养的土壤技术(UST)或原位孵育是最新的发展之一,涉及使用环境中存在的自然生长因子进行培养(Berdy等,2017; Chaudhary等,2019)。
考古泥炭地一直是爱尔兰考古材料的非常重要的来源。在泥炭地矿床下和内部发现的工件提供了有关生活在我们历史早期的社区以及从石器时代到最近使用的食物,衣服和工具的详细信息。这个BOG集团将支持该项目,周围地区具有丰富的考古历史,该历史将在项目的所有阶段中考虑到。这些沼泽和周边地区的遗产将在环境影响评估报告(EIAR)中解决,该报告将伴随计划申请,特别是以下各章:考古,建筑和文化遗产;以及景观和视觉。
园艺是致力于生产营养和高质量作物的重要全球部门。但是,其维持高收益率的能力取决于有效的受精和疾病控制方法,这引起了环境挑战,例如温室气体排放,富营养化以及广泛使用合成肥料和pesti cides。欧盟(EU)立法强烈主张合成投入的减少并促进替代策略(农场到叉子战略,2022年)。园艺的另一个问题是依赖泥炭作为主要生长媒介。虽然欧洲园艺主义者广泛偏爱泥炭泥炭,因为它具有可负担性和有利的特性,例如保留水和养分交换(Owen,2007),其使用及其不可再生本质的环境影响呈现出明显的劣势。为了减少泥炭依赖的替代媒体的追求不仅是环境的命令,而且还与欧盟立法保持一致(Owen,2007)。在追求循环经济时,农业食品行业具有宝贵的资源,有可能应对与可持续性有关的重大挑战。这些领域内的生物量生产可以被价值并重新用于必不可少的产品。例如,培养白蘑菇(agaricus bisporus)和牡蛎蘑菇(胸膜骨化剂),例如产生大量的收获后副产品,即用过的白色蘑菇堆(SMC)和花费的牡蛎蘑菇蜂房底物(SOS)。欧洲牡蛎蘑菇的生产被认为低于白色每公斤栽培的白色蘑菇,生成约2.5 - 5千克的SMC(Sample等,2001)。欧洲每年生产超过300万吨SMC(García-Delgado等,2013),对蘑菇行业提出了不断升级的环境关注,并强调了这种有机废物的可持续解决方案的紧迫性。
摘要。微生物从土壤到大气的微生物释放,反映了环境条件如何影响土壤有机物(SOM)的性能,尤其是在大量有机的生态系统中,如Qinghai – Tibetan Plateau(QTP)等大型有机物生态系统。放射性碳(14 C)是全球碳循环的重要示踪剂,可用于通过估计碳固定和呼吸之间的时间滞后来理解SOM动力学,通常通过年龄和过境时间等指标进行评估。在这项研究中,我们在四个温度(5、10、15和20°C)和两个水上填充的孔隙空间(WFPS)水平(60%和95%)下融化了泥炭地和草原土壤,并测量了散装土壤和异育呼吸的14 C标志。我们比较了批量土壤的14 c与呼吸碳的1 14 CO 2之间的关系,这是两种土壤的温度和WFP的函数。为了更好地解释我们的结果,我们使用了数学模型来分析计算的池数字,碳(K)的分解速率,转移(α)和分配(γ)系数如何影响1 14 c组和1 14 CO 2的关系,以及各自的平均年龄和平均年龄和平均年龄和平均值交通时间。从我们的孵化中,我们发现散装中的14个c谷物和来自泥炭地的Co 2比草原土壤的耗尽(旧)要大得多(古老)。我们的结果表明,温度的变化不会影响两种土壤中异养的呼吸CO 2的1 14 c瓣膜。然而,WFP的变化对基层土壤中的14个CO 2的影响很小,并且在泥炭地土壤中具有显着影响,在泥炭地土壤中,较高的wfps水平导致较高的水平导致1 14 CO 2的枯竭。在我们的
良好的农业实践存在于Lulucf部门中,对于温室气体平衡而言无疑为阳性。欧盟可持续的碳周期倡议尤其突出了典范的典范泥炭地和湿地,农林业,并在矿物质土壤上维持和增强土壤有机碳(SOC)。我们认为,必须明确评估碳养殖实践的总体潜力。泥炭地和湿地是有机土壤中的天然碳汇,如果恢复恢复会变成大碳源。然而,大多数欧盟农民在矿物土壤中处理碳物质,与有机土壤相比,碳固换潜力更加有限,而他们的作物产量最高。
我希望这一策略可以促进东盟成员国实现这样的愿景,即到2030年,东盟将拥有健康且有弹性的泥炭地,这将有助于促进生物多样性保护,缓解气候变化和生态系统服务。作为东盟期待2025年后的东盟社会文化社区蓝图及其对昆明 - 蒙特尔全球生物多样性框架的贡献,我相信可持续的peatland管理层将在通过基于自然的解决方案和基于生态系统的基于生态学的方法来改善其生活方面,在建立韧性社区方面发挥重要作用。我们决心打破泥炭地退化的周期,减少跨界雾化污染的风险及其对我们的环境,健康和经济的不利影响。