摘要:大西洋子午翻转循环(AMOC)在气候中起着重要作用,将热量和盐传输到北大西洋亚北大西洋。AMOC的变异性对大气强迫敏感,尤其是北大西洋振荡(NAO)。由于AMOC观察值很短,因此气候模型是研究AMOC可变性的宝贵工具。然而,气候模型存在已知问题,例如不确定性和系统偏见。进行投资,评估了参与耦合模型对比项目(CMIP6)的6阶段模型的工业前控制实验。在模型的子极平均表面温度和盐度中有一个大但相关的扩散。通过将模型分成温暖的或冷的新鲜的亚极性回旋,表明温暖的 - 咸模型在拉布拉多海中具有较低的海冰盖,因此,在正阳阳性的NAO期间,较大的热量损失。层次也较弱,因此较大的与NAO相关的热量损失也会影响更大的深度。因此,在温暖的模型中,地下密度异常比倾向于冷又新鲜的模型要强得多。当这些异常沿西部边界向南传播,它们建立了一个区域密度梯度异常,从而促进了温暖的咸模型中对NAO的延迟延迟的延迟。这些发现证明了模型的含义是如何在变量之间链接并影响变异性的,这强调了改善模型中北大西洋平均状态的需求。
摘要。dansgaard – oeschger(do)事件是冰川气候的广泛特征。被广泛接受的是,在北大西洋地区最多概述的气候变化是由强度和/或北向循环的强度和/或北端的突然变化引起的,可能源自大洋 - 冰冰 - 冰峰系统的自发过渡。在这里,我们使用一种地球系统模型,该模型会产生类似的事件,以表明发生千禧一代AMOC变化的气候条件由表面海洋浮力片控制。在特殊情况下,我们发现,当北大西洋北部大西洋从负面变成正变成积极时,浮力浮游在拉布拉多和北欧海中具有深水形成的当今对流模式变得不稳定。在这一点的接近度中,该模型在与强和弱AMOC状态相关的不同对流模式之间产生跨性别。浮力浮标取决于表面的淡水和热孔以及海水系数的温度依赖性海水的温度依赖性。我们发现,较大的冰盖倾向于通过减少净淡水流量来稳定对流,而CO 2诱导的冷却降低了浮力损失,并破坏对流的稳定。这些结果有助于解释事件出现的条件,并且是对突然气候变化机制的改进理解的一步。
摘要。大西洋子午翻转循环(AMOC)在塑造北大西洋地区及其他地区的气候条件方面起着至关重要的作用,其未来的稳定性是一个令人关注的问题。虽然对面对地表淡水强迫(FWF)的AMOC稳定性进行了彻底的研究,但其对变化CO 2的库里库反应在很大程度上没有探索,从而无法全面了解其在全球变暖下的稳定性。在这里,我们使用地球系统模型探索AMOC的稳定性,因为面对北大西洋和大气CO 2在180至560 ppm之间的FWF的组合变化。我们找到了与定性不同的对流模式相关的四个不同的AMOC状态。Apart from an “Off” AMOC state with no North Atlantic deep-water formation and a “Modern”-like AMOC with deep water forming in the Labrador and Nordic seas as observed at present, we find a “Weak” AMOC state with convection occurring south of 55° N and a “Strong” AMOC state characterized by deep-water formation ex- tending into the Arctic.在整个CO 2的范围内,关闭状态和弱状态是稳定的,但仅适用于正FWF。对于一系列正FWF,现代状态在高于前工业的CO 2下是稳定的,仅对于负FWF而言,对于较低的CO 2。最后,强度仅对高于280 ppm的CO 2和FWF <0.1 SV才稳定。Genally,AMOC的强度随着CO 2的增加而增加,并且随着FWF的增加而减小。我们的AMOC稳定性景观有助于解释寒冷气候中的AMOC不稳定性,尽管它并不直接适用于百年纪念时间尺度上对全球变暖的根本性瞬时反应,但它可以提供有关AMOC可能长期命运的有用信息。例如,虽然在工业前的范围下,AMOC在模型中是可以单位的,但对于高于400 ppm的CO 2浓度,OFF状态也变得稳定,这表明在较温暖的气候中的AMOC关闭可能是不可逆转的。
1 Potsdam气候影响研究所(PIK),莱布尼兹协会成员,P.O。BOX 601203,D-14412 POTSDAM德国2环境,地球和生态系统,开放大学,Walton Hall,Milton Keynes,MK7 6AA,UKBOX 601203,D-14412 POTSDAM德国2环境,地球和生态系统,开放大学,Walton Hall,Milton Keynes,MK7 6AA,UK
11大西洋循环是全球运输热量和12种营养物质的全球海洋传送带的关键组成部分。它可能由于全球变暖而削弱,对气候和生态学有影响。13然而,由于目前使用的低分辨率气候模型14不能解决小尺度,因此预期的变化在很大程度上仍然不确定。尽管在低分辨率分辨率和高分辨率的气候模型版本中,大规模循环往往会均匀地削弱,但我们发现在16个北大西洋的小规模循环在全球变暖下突然变化,并且表现出明显的空间异质性。17此外,高分辨率模型版本中未来的大西洋循环在18结合中与海冰静修处扩展,并向北极增强。最后,尖端的气候19模型表明涡流和循环的敏感变化,以便将来变暖,因此20为下一代气候模型提供了基准,这些模型可以摆脱未解决的21个量表的参数化。
...观察数据表明,真正的AMOC位于双态度中,这意味着相对接近临界点。相比之下,在大多数模型中,AMOC处于远离临界点的单个稳定状态(请参阅Weijer等人的评论,2019年)。原因显然是模型中大西洋盐度分布中微妙的偏见。可以将这种盐度分布推向更现实的,观察到的盐度值,而不是让盐度在计算的降雨,蒸发和洋流的影响下自由进化。在气候模型中完成此操作时,AMOC在二氧化碳浓度的情况下崩溃了,而在原始的未调节模型中仍然保持稳定(Liu等,2017)。
使用线性逆建模(LIM)研究了热带大西洋子午模式(AMM)的可预测性和可变性。使用“能量”规范对LIM进行分析,确定了两种最佳结构,这些结构经历了某些短暂生长,一种与El Nin〜 -Southern振荡(ENSO)有关,另一个与大西洋多年振荡(AMO)/AMM模式有关。使用AMM-norm对LIM进行分析,以识别与第二能量Optima相似结构(OPT2)的“ AMM Optimal”。AMM最佳和OPT2在高纬度大西洋中表现出两个SST异常。AMM最佳选择还包含第一个能量最佳(ENSO)的某些元素,表明LIM捕获了ENSO与AMM之间众所周知的关系。LIM预测与观察到的AMM的季节性相关性在北方弹簧期间的AMM可预测性增强,并且在9月左右初始化的长期(约11-15个月)预测。lims,以确定AMM上的热带pacifip和中纬度和高纬度SST的影响。对区域LIM的分析表明,热带PACIFIC是北方弹簧期间AMM可预测性的原因。中至高纬度SST异常有助于北方夏季和秋季AMM可预测性,并负责从9月的初始条件开始增强可预测性。分析全lim的经验正常模式确定了这些物理关系。结果表明,中高纬度大西洋SST异常在产生AMM(和热带大西洋SST)变化中的潜在重要作用,尽管尚不清楚这些异常是否提供任何社会有用的预测技能。