通过谱系可塑性和发散的克隆进化(3,5-7)。CRPC-NE患者通常通过类似于小细胞肺癌(SCLC)的化学疗法方案进行积极治疗,并且还在进行几项CRPC-NE指导的临床试验。当前CRPC-NE的诊断仍然存在,因为需要转移活检以及室内肿瘤异质性。浆细胞-FRE-FREDNA(CFDNA)的DNA测序是一种无创的工具,可检测CER中的体细胞改变(8)。但是,与CRPC-Adeno相比,癌症特异性突变或拷贝数的变化仅在CRPC-NE中适度富集(3,9)。相反,我们和其他人观察到与CRPC-NE相关的广泛的DNA甲基化变化(3,10),并且可以在CFDNA中检测到这种变化(11,12)。DNA甲基化主要是在CpG二核苷酸上进行的,并且与广泛的生物学过程有关,包括调节基因的表达,细胞命运和基因组稳定性(13)。此外,DNA甲基化是高度组织特异性的,并提供了强大的信号来对原始组织进行反v,从而允许增强循环中低癌部分的检测(16、17),并已成功地应用于早期检测和监测(18,19)。如前所述,可以用甲硫酸盐测序来测量基础分辨率下的DNA甲基化,该测序为每种覆盖的CpG提供了一小部分甲基化的胞质的β值的形式,范围为0(无甲基化)至1(完全甲基化)。低通序测序遭受低粒度,并以粗分辨率捕获所有区域。原则上,诸如全基因组Bisulfite CFDNA测序(WGB)之类的方法可以很好地了解患者的疾病状况,并具有最佳的甲基化含量信息。实际上,鉴于高深度全基因组测序的成本,WGB的低通型变种适用于大规模的临床研究。鉴于此上下文中的大多数CPG站点可能是非信息或高度冗余的,我们旨在将测序空间减少到最小设置
结果:研究结果表明,大多数(55%)获得适当知识的较高小学生(55%),而33%的较高小学生则获得了有关计算机视觉综合征的足够知识。后测试后知识评分(14.24±5.19)高于预测试知识得分(6.68±3.35)。配对的“ T”测试用于找到CVS上的有效性教育小册子。在0.05显着性水平下,知识中计算出的“ t”值(10.13,p <0.05)大于表值(t 120 = 1.98)。这表明,在接受教育小册子与人口统计学变量之间管理教育小册子的关联后,知识的增长很大,表明先前存在的知识评分与所选人口统计学变量之间的计算机视觉综合征之间存在显着关联。
摘要 本研究的目的是比较人工神经网络 (ANN) 与贝叶斯岭回归、贝叶斯套索、贝叶斯 A、贝叶斯 B 和贝叶斯 Cπ 在估计内洛尔牛肉嫩度的基因组育种值方面的预测性能。使用 Illumina Bovine HD Bead Chip(HD,来自 90 个样本的 777K)和 GeneSeek Genomic Profiler(GGP Indicus HD,来自 485 个样本的 77K)对动物进行基因分型。对每个芯片应用基因型的质量控制,包括去除位于非常染色体上的 SNP,其次要等位基因频率 <5%、与 HWE 的偏差(p < 10 –6)以及连锁不平衡 >0.8。使用 FImpute 程序进行基因型估算。基于谱系的分析表明,肉质嫩度具有中等遗传性(0.35),这表明可以通过直接选择来改善肉质嫩度。贝叶斯回归模型的预测准确度非常相似,加性效应和显性效应分别从 0.20(贝叶斯 A)到 0.22(贝叶斯 B)和 0.14(贝叶斯 Cπ)到 0.19(贝叶斯 A)不等。ANN 对遗传价值的基因组预测准确度最高(0.33)。尽管人们认识到深度神经网络可以提供更准确的预测,但在我们的研究中,具有一个隐藏层、105 个神经元和整流线性单元 (ReLU) 激活函数的 ANN 足以提高对肉质嫩度遗传价值的预测。这些结果表明,具有相对简单架构的 ANN 可以为 Nellore 牛肉质嫩度提供卓越的基因组预测。
* 第一学期和第二学期的软核课程:学生应在第一学期和第二学期开始时从可用的软核课程中选择任意两门软核课程。系理事会/附属学院将在第一学期和第二学期开始时宣布,将根据教师的可用性和对软核课程的需求,在第一学期和第二学期提供任意两门或两门以上的软核课程。选择软核课程的学生人数至少为十人。**项目工作:第三学期的学生应注册一个项目工作,该项目在第四学期占 4 个学分。项目工作的工作量是每位学生每周与老师接触一小时。学生应在每周剩余的 3 个学分中完成实地工作和图书馆工作。