由于其出色的热稳定性而部分芳香的聚酰胺被广泛用于高温应用中,但是,就像其脂肪族对应物一样,它们很容易易燃且更具挑战性的处理。在这项工作中,合成了几种有机磷的阻燃剂并与部分芳香的聚酰胺合成并复杂化,并评估其可加工性,热和火行为。The compounds containing a commercial flame retardant, Exolit ® OP 1230 (EX), and two new flame retardants, namely 1,4-phe nylenebis(diphenylphosphine oxide) (MP) and (1,1 ′ -biphenyl]-4,4 ′ -diylbis(diphenylphosphine oxide) (BP), showed self-extinguishing与原始PAP相对于原始PAP,功能(即UL94 V0类)具有4 wt%磷(P)的载荷,以及PHRR的实质性降低(最高47%)使用扩展时间尺度上的流变学测量来评估部分芳香族聚酰胺化合物的熔体稳定性。聚合物基质中MP和BP的存在不会触发任何过度的降解现象,例如链条分支,分支或交联反应,从而允许与原始芳族芳族聚酰胺样品相似的稳定加工性。最后,对热分解过程中进化气体的分析表明,在分解过程的早期,MP和BP在很早的早期就发挥着火焰抑制作用。
治疗大脑条件。在此,我们提供了不同的鼻内光输送方法的摘要,包括基于鼻孔的便携式方法和植入有效的全身性或直接辐照大脑的深鼻方法。Nostril-based i-PBMT devices are available, using either lasers or light emitting diodes (LEDs), and can be applied either alone or in combination to transcranial devices (the latter applied directly to the scalp) to treat a wide range of brain conditions such as mild cognitive impairment, Alzheimer's disease, Parkinson's disease, cerebrovascular diseases, depression and anxiety as well as 失眠。证据表明,基于鼻孔的I-PBMT改善了血液流变学和脑血流,因此,I-PBMT在不需要刺穿血管的情况下,I-PBMT可能与外围静脉内激光辐照程序具有同等的结果。到目前为止,在临床环境中尚未对植入PBMT光源深处植入PBMT光源,但是模拟研究表明,通过曲折板和蝶骨窦深鼻中的PBMT可能是一种有效的方法,可以使前额叶和轨道方面的Cortex的腹膜部分传递光。使用廉价LED涂药器的家庭I-PBMT具有一种新型神经居住方法的潜力。比较研究还必须测试假手术和经颅PBMT。
纤维素纳米纤维的高结构各向异性和胶体稳定性使在非常低的固体含量下创建自动立足的原纤维水凝胶网络。在节奏氧化的CNF的表面上添加甲基丙烯酸酯部分,可以通过自由基聚合物的自由基聚合物形成更有效的机械性能,从而形成更强大的共价交联网络。该技术产生强大而弹性的网络,但具有不确定的网络结构。在这项工作中,我们使用丙烯酸酯限制的远程技术聚合物,这些聚合物从PEG二丙酸酯和二硫代硫醇的梯级生长聚合中得出,以交联甲基甲基甲基丙烯酸酯氧化纤维素化的纤维素纳米纤维(MATO CNF)。通过流变学研究,压缩和拉伸负荷观察到,这种组合导致了柔性和强的水凝胶。发现这些水凝胶网络的结构和机械性能取决于CNF和聚合物交联的DI月经。通过SAXS(小角度X射线散射)和光影学评估了网络的结构和单个COM的作用。对混合CNF/聚合物网络的彻底了解,以及如何最好地利用这些网络的能力,使基于纤维素的材料在包装,软机器人和生物医学工程中的应用中进一步发展。
石墨烯纳米纤维(GNFS)是石膏行业有希望的添加剂。但是,它们对不同形式和配置的影响仍未得到探索。这项研究深入研究了不同类型的GNF添加剂在石膏层的特性中的EF效果。的发现表明,高表面区域(HS)GNF和液体低表面面积(LS)GNF会引起显着的微结构改变。虽然流变学仍然不受影响,但GNFS加速了石膏水合,导致快速设置。此外,这些GNF促进了硬石石的外观,从而产生了较短晶体和粘结较差的多孔基质。这些微结构变化显着降低了弯曲和抗压强度,损失约为25%。掺入表面活性剂通过限制晶体形成和生长进一步加剧了这些负面影响。因此,液体GNF添加剂表现出最低的性能和耐用性属性。虽然GNF可以将热性能提高到石膏板中,但它们的实现也可能导致机械强度和耐用性的显着降低。需要进行更多的研究来开发更兼容并且不会损害所得组件的性能的添加剂。有兴趣实施石墨烯基材料的建筑实践应集中于具有非常低比表面积(<100 m 2 /g)的粉末状添加剂,以最大程度地减少对强度和耐用性的毒性和负面影响。
建立的用于诊断肩cap骨骨折的成像方法是X射线,骨扫描,磁共振成像(MRI)和计算机断层扫描(CT),MRI是裂缝检测最敏感和最具体的方法。CT也具有很高的特异性,但灵敏度较低。但是,它通常比MRI更优于MRI,因为它更便宜且更容易获得(1,4,5)。高分辨率外围定量计算机断层扫描(HR-PQCT)代表检测scaphoid骨折的创新选择(6-8)。由于第一个结果直到最近才发布,因此在该领域尚未广泛建立其使用。最初,HR-PQCT旨在测量骨密度并量化骨骼的三维微构造(9)。由于几个原因,包括技术问题,扫描获取和评估缺乏标准化以及与成本相关的有限可用性,其临床价值仍处于边缘状态(10)。然而,近年来,HR-PQCT在许多科学领域都取得了重大进展,例如,在评估流变学疾病对关节表面的影响(11,12)(11,12),骨骼微体系结构和骨骼强度对次生骨质骨的骨骼和代谢性骨骼的影响(10),以及对骨骼的影响(10)的作用,以及对骨骼的效果,以及对骨骼的效果(均具有抗抗病性的作用)(均具有抗抗病性的作用(愈合(14-16)和远端半径裂缝机制的研究(17,18)。
经验研究生研究员2019年6月 - 2024年12月,特拉华大学,材料科学与工程大学,纽瓦克·德(Newark de)•UD•在美国SBA&UD Eng的财务奖中,在UD专利的3个知识产权的发明家中,被选为首届创新特拉华州研究员。•负责500万美元的赠款,以有效加速技术开发的创新,以将实验室研究转化为新兴和服务不足的市场中的消费者就绪产品•NIH临床试验的主要研究人员,用于与NFB Baltimore的人类参与者进行的材料的材料研究人员•调查的表面化学效果,互动和耐磨的机构,互动,互动,效果,耐磨性,效果,效果,耐磨性,适用于人体,耐磨性,耐磨性,效果,耐磨性,耐磨性,耐磨性,磨损,磨损,耐磨性,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,耐磨性,耐磨度,用于财产预测的高性能,非等热传热和流变学建模•开发的新型高级挤出系统,用于3D印刷具有局部特性的新复合材料,新型的表面化学摩擦修饰,用于非视觉信息和交流•来自陆军研究实验室的资金,塑料创新中心,NIH R01
1帕维亚大学内科和治疗学系,帕维亚大学,IRCCS ISTITITI Clinici Scientifi Maugeri,意大利帕维亚的Irccs Istituti Clinici Scientifi Maugeri; 2二次促进医学系,国家和雅典卡普迪斯特里大学,希腊;德克萨斯州休斯顿市德克萨斯州安德森癌症中心的肾脏科学3部分; 4波兰GDA NSK医科大学肾脏科学,移植学和内科临床系; 5肾脏病和透析单元,路易吉·萨科生物医学和临床科学系,意大利米兰米兰大学; 6美国明尼苏达州罗切斯特市梅奥诊所医学系血液学系; 7医学诊所V,肾脏病,流变学,血液纯化,德国Braunschweig学术教学医院Braunschweig; 8查尔斯大学和捷克共和国布拉格的医学院第一学院肿瘤学系; 9肾脏研究中心,澳大利亚新南威尔士州韦斯特米德的儿童医院; 10悉尼公共卫生学院,悉尼大学,澳大利亚新南威尔士大学;比利时布鲁塞尔的Kdigo 11;英国伦敦伦敦大学学院肾脏医学系12; 13乔治全球卫生研究所,澳大利亚悉尼; 14美国德克萨斯州休斯敦贝勒医学院肾脏科学系肾脏健康研究所,肾脏科学系;和15肾脏科学,透析和内科,波兰医科大学
制造工程,微加工,加工,精密工程36。奎师那·库马尔(Krishna Kumar),r 1956年的计算力学;轮胎力学37。克里希那村(Krishnamurthy),MV 1941热工程和太阳能科学38。Kumar,Pramod 1975热能系统;传热39。lal,GK 1938金属形成;金属研磨40。Majumdar,BC 1941机器设计,摩擦学41。Mallik,AK 1947振动工程,机制42。Mathur,HB 1936内燃机,燃料燃烧和污染43。Mishra,PK 1945年非惯例制造; EDM和激光处理44。Mohanty,AR,1965年的声学和工业噪声控制;机械状况监测;水下声学,汽车工程,机器设计45。Munjal,ML 1945技术声学;噪声和振动控制;消音器和消音器46。Muralidhar,K 1958流体力学,传热,光学测量,激光层析成像,界面现象,生物医学成像,气体水合,血液流变学,喷气机和唤醒47。Narasimhan,Arunn 1971在多孔媒体中运输; Bio-Thermofluids48。Narasimhan,R 1960骨折力学,计算固体力学49。Narayanan,S 1945振动,声学,非线性动力学,随机振动,智能结构50。Narayankhedkar,KG 1946年低温工程,制冷和空调51。natarajan,R 1941年燃烧,能源科学技术
全稳态锂离子电池(LIB)吸引了潜在安全的存储系统。1-7此外,近年来,已经对3D打印技术进行了调整以使Libs的制造,从而允许方便地生产柔性设计,例如微型3D形状。原则上,使用简单的打印系统可以将这种微电池直接集成到包含各种电子设备的基板上。最近,已经提供了用于Lib的阴极和阳极的3D可打印墨水。8-13在此工作,Lewis等。 意识到,使用3D可打印电极制造的锂离子微生物具有正确调整的流变学和电化学特性。 8 Kohlmeyer等。 开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。 11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。 可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。 14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成8-13在此工作,Lewis等。意识到,使用3D可打印电极制造的锂离子微生物具有正确调整的流变学和电化学特性。8 Kohlmeyer等。 开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。 11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。 可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。 14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成8 Kohlmeyer等。开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成14-18 Cheng等。使用高温直接ink写作技术开发了3D打印的混合固态电解质。15电解质墨水由溶解在n-丙基-N-甲基吡咯烷
摘要 利用拉曼光谱、差示扫描量热法、温度调制差示扫描量热法、介电光谱和流变学研究了将液体电解质限制在聚合物基质中的影响。聚合物基质由热固化乙氧基化双酚 A 二甲基丙烯酸酯获得,而液体电解质由基于乙基咪唑阳离子 [C 2 HIm] 和双(三氟甲烷磺酰基)酰亚胺 [TFSI] 阴离子的质子离子液体组成,掺杂有 LiTFSI 盐。我们报告称,受限液相表现出以下特征:(i)结晶度明显降低;(ii)弛豫时间分布更宽;(iii)介电强度降低;(iv)在液体到玻璃化转变温度 (T g ) 下协同长度尺度降低;和 (v)局部 T g 相关离子动力学加速。后者表明两个纳米相之间的界面相互作用较弱,而几何限制效应较强,这决定了离子动力学和耦合的结构弛豫,从而使 T g 降低约 4 K。我们还发现,在室温下,结构电解质的离子电导率达到 0.13 mS/cm,比相应的本体电解质低十倍。三种移动离子(Im +、TFSI - 和 Li +)对测量的离子电导率有贡献,从而隐性降低了 Li + 的迁移数。此外,我们报告称,所研究的固体聚合物电解质表现出将机械载荷转移到结构电池中的碳纤维所需的剪切模量。基于这些发现,我们得出结论,优化的