摘要 心流是一种最佳或高峰体验状态,通常与专业和创造性表现有关。音乐家在演奏时经常体验到心流,然而,由于神经数据中存在大量伪影,这种难以捉摸的状态背后的神经机制仍未得到充分探索。在这里,我们通过关注心流体验后立即进入的静息状态来绕过这些问题。音乐家演奏了预期会可靠地引发心流状态的乐曲,并作为对照,演奏了不会引发心流的音乐作品。在心流状态之后,我们观察到上部 alpha(10-12 Hz)和 beta(15-30 Hz)波段的频谱功率更高,主要是在大脑前额叶区域。使用相位斜率指数进行的连接分析显示,右额叶簇影响了 θ(5 Hz)波段左颞叶和顶叶区域的活动,在报告高倾向性心流的音乐家中尤其明显。前顶叶控制网络内的 θ 波段连接促进了认知控制和目标导向注意力,这对于实现心流状态可能至关重要。这些结果揭示了与音乐家的即时心流后状态相关的大规模振荡相关性。重要的是,该框架有望在实验室环境中探索心流相关状态的神经基础,同时保持生态和内容有效性。
Appendix ............................................................................................................................................... 61-67
我们预见到可以在受量子纠错码 (QECC) 保护的量子比特流上搭载经典信息。为此,我们提出了一种通过故意引入噪声在量子流上发送经典比特序列的方法。这种噪声会引发一个受控的征兆序列,可以在不破坏量子叠加的情况下对其进行测量。然后可以使用这些征兆在量子流之上编码经典信息,从而实现多种可能的应用。具体而言,搭载量子流可以促进量子系统和网络的控制和注释。例如,考虑一个节点彼此交换量子信息的网络 [1-7]。除了用户数据之外,网络运行还需要同步模式、节点地址和路由参数等控制数据。在经典网络中,控制数据会消耗物理资源。例如,带内同步要求传输节点在数据流中插入特定模式的比特(消耗额外带宽)来分隔数据包,而接收节点则要求从传入的比特中搜索此类模式 [8]。然而,将量子比特作为控制数据插入对量子网络来说并不是一个可行的选择,因为测量会破坏量子态叠加 [9]。出于这个原因,一些研究断言量子网络将需要经典网络来实现带外信令和控制 [7]。另一方面,参考文献 [10-12] 开发了将经典比特和随机数(使用连续变量)一起传输以实现量子密钥分发 (QKD),以增强经典网络的安全性。相反,我们渴望将经典比特和量子比特(使用离散变量)一起传输,以控制量子网络。
调查显示,通过减少从电源(公共电网)到负载(服务器卡)的关键电流路径中所需的电源转换次数,可以提高典型配电架构的可靠性和效率。然而,将电源转换减少到单点转换会产生不利影响。可靠性降低,因为它使配电更容易发生故障。实施冗余配电架构解决了这一弱点。在这方面,直流配电架构具有最大的优势,因为它只需要两次电源转换,而交流配电架构则需要四次。文献中报告的效率改进范围为 10% 到 20%。此外,研究发现,直流配电对于连接新兴的现场发电和储能技术具有最大的优势,因为这些设备中的很大一部分以直流或高频交流电供电,当连接到传统交流配电系统时,需要间歇性直流转换。
为了给舰载机的适航性提供参考,本文对尾喷流场及其对飞行甲板的影响进行了研究。首先建立了航空母舰和舰载机的几何模型,并在此基础上划分了非结构化四面体网格进行数值分析。然后,本文对4架舰载机在舰首准备起飞时尾喷流场进行了数值模拟,以评估其对喷气导流板(JBD)和飞行甲板的影响。分析过程中采用了标准k-ε方程、三维N-S方程和计算流体力学(CFD)理论。在求解方程时,还考虑了风和射流的热耦合。利用CFD软件FLUENT模拟给出了速度和温度分布。结果表明:(1)该解析方法可以用于模拟具有复杂几何模型的气动问题,且结果可靠性高;(2)通过分析可以优化安全工作区、JBD安装方案和起飞位置布置。
摘要。中子个人剂量计响应函数的测量通常涉及一系列非常广泛的测量,这些测量使用加速器产生的单能中子。这些测量成本高昂,对于希望研究其剂量计的剂量测定服务来说,通常不切实际,特别是当他们试图改善剂量计响应并希望研究设计或处理中各种变化的影响时。描述了一种技术,利用中子产生反应(例如 7Li(p,n)7Be 和 T(p,n)3He)的中子能量随角度的变化,在一次实验中将多个剂量计照射到一定范围的能量中。本报告描述了三个场的特性,特别是能量密度的角度分布,覆盖了 101 至 250 ke V、336 至 565 ke V 和 561 至 1200 ke V 的能量范围,它们之间覆盖了快中子个人剂量计检测灵敏度具有阈值的重要能量区域,并且有关响应函数的详细信息尤为重要。注意:本报告中引用的所有不确定性都是标准 (10) 不确定性的估计值,代表置信度约为 67%。
液晶作为一种优良的电光材料,具有效率高、工作光谱范围广、可采用多种外场刺激(如电场/磁场、光照、热量)等优点,被广泛应用于光场调制。此外,其他材料如二氧化硅和一些氧化物基超表面、超材料、光子晶体、铌酸锂基非线性晶体等也在光场调制中发挥着独特的优势。关键词: - 光场调制 - 空间结构光束 - 相位 - 振幅 - 偏振 - 空间光调制 - 时域调制 - 频率调制 - 液晶
本课程进一步建立在自然的量子力学描述中,如量子力学1和2中的早期所研究。重点是量化具有多个自由度的系统或连续限制的现场理论。由此产生的量子场理论描述了一种普遍的结构,该结构在许多情况下出现,其中连续描述适当。主要用作基本粒子物理语言的主要用途,也是量子重力模型的基础(例如,字符串理论),量子场理论也与描述固态物理学中的关键现象有关。用量子电动力学(QED)作为主要例子说明了这些概念。重点是理解物理概念及其与数学模型的关系。