在20.11.2024,根据艺术规定。27 para。(2)法律编号。132/2016关于国家诚信局(以下简称 - 法律编号。132/2016)和点1和5的ANI命令。 46 of 09.09.2024通过电子发行系统被随机分发,以验证,由卡胡尔地区检察官的检察官Viorica Marga夫人提交了2023年的财富和年度个人利益。 完整性检查员指出,根据Art。 27 para。 (1)和(2)法律编号。 132/2016,验证财富和个人利益声明的验证包括验证声明主体提交陈述的提交,验证遵守陈述形式的遵守情况以及验证违反法律制度的违反法律制度的宣布和个人利益的行为。 根据风险因素,腐败因素,宣言主题的脆弱性以及诚信委员会批准的标准,每年检查的财富和个人利益的陈述每年被随机确定。 由于诚信检查员对个人财富和利益的数据进行了反位,并由Viorica Marga主题指示的数据在2023年的财富和个人利益宣言中所指示的数据发现,该宣言在法律术语中提交的主题是在2023年11月2013年提交的宣言和个人利益的宣布和个人利益的主题。它。1和5的ANI命令。46 of 09.09.2024通过电子发行系统被随机分发,以验证,由卡胡尔地区检察官的检察官Viorica Marga夫人提交了2023年的财富和年度个人利益。完整性检查员指出,根据Art。27 para。(1)和(2)法律编号。132/2016,验证财富和个人利益声明的验证包括验证声明主体提交陈述的提交,验证遵守陈述形式的遵守情况以及验证违反法律制度的违反法律制度的宣布和个人利益的行为。根据风险因素,腐败因素,宣言主题的脆弱性以及诚信委员会批准的标准,每年检查的财富和个人利益的陈述每年被随机确定。由于诚信检查员对个人财富和利益的数据进行了反位,并由Viorica Marga主题指示的数据在2023年的财富和个人利益宣言中所指示的数据发现,该宣言在法律术语中提交的主题是在2023年11月2013年提交的宣言和个人利益的宣布和个人利益的主题。它。同时,在分析了在2023年宣布财富和个人利益中包含的数据之后,与通过访问的状态信息资源获得的信息佐证了,发现了差异
摘要:此演讲探讨了DeepSeek R1的数学基础,DeepSeek R1是一种专为复杂推理而设计的模型。与传统的监督精细调整不同,DeepSeek R1相对政策优化(GRPO)是一种新的方法,可以稳定近端政策优化(PPO),而没有批评家。GRPO通过将问题解决为顺序的步骤来增强思想链推理。我将分析其理论属性和对推理驱动的强化学习的影响。
对随机和不规则抽样的时间序列进行建模是在广泛的应用中发现的一个具有挑战性的问题,尤其是在医学中。神经随机微分方程(神经SDE)是针对此问题的有吸引力的建模技术,它可以将SDE的漂移和扩散项与神经网络相关。但是,当前用于训练神经SDE的算法需要通过SDE动力学进行反向传播,从而极大地限制了它们的可扩展性和稳定性。为了解决这个问题,我们提出了轨迹流匹配(TFM),该轨迹以无模拟方式训练神经SDE,通过动力学绕过反向传播。TFM利用从生成建模到模型时间序列的流量匹配技术。在这项工作中,我们首先为TFM学习时间序列数据建立必要条件。接下来,我们提出了一个改善训练稳定性的重新聚集技巧。最后,我们将TFM适应了临床时间序列设置,从绝对性能和不确定性预测方面,在四个临床时间序列数据集上的性能提高了,这是在这种情况下的关键参数。
合同条款依照陆上自卫队服务合同标准合同条款执行。 中标人将是我们根据所有项目的总金额(项目总数和金额总数)确定的估价范围内最低出价的竞标人。如果有两名或两名以上最低出价者有资格中标,则通过抽签方式确定中标者。 E) 合同的成立:合同或其他文件成立,是指当事人在合同或其他文件上签字、盖章的行为。其他情况,应当在中标时作出决定。 其他:参照《招标投标及合同指南》。 (3)无效投标 a) 不具备参加竞争所需资格的人员进行的投标或违反投标条件的投标; b) 违反“投标和签约指南”的投标; c) 投标金额、投标人名称和投标人印章难以区分的投标; d) 投标人的排除有组织犯罪的承诺是虚假的,或者违反了承诺; e) 投标迟于投标日期和时间提交,或者投标文件以邮寄等方式提交并在交付期限之后到达; f) 通过电报、电话或传真提交的投标 (4)合同等。如果中标金额加上消费税金额为 150 万日元或以上,则将准备这些。但是,金额在50万日元以上150万日元以下时,将开具发票,金额不足50万日元时,则无需开具发票。 (5)其他 a.如您希望参加投标,您必须提前通过传真或其他方式提交2022至2024财年资格审查结果通知副本,或者,如果您目前正在申请资格,则必须提交一份表明您已经申请的文件。 (一)委托代理投标的,应当在投标开始前提交委托代理委托书。 C)投标文件中必须注明不含税金额。 E. 允许通过邮寄等方式进行投标。但是,申请书必须于 2024 年 11 月 27 日(星期三)下午 5 点之前送达日本陆上自卫队航空学校宇都宫校会计部。 若省略印章,须填写负责人及承办人的姓名及联系方式。 (c)如初次投标已有邮寄投标人,则重新投标的时间安排如下: 日期和时间:2024 年 12 月 4 日星期三上午 11:30,宇都宫校区总部大楼 2 楼投标室。如果您希望通过邮寄方式参与重新投标,您的投标必须在 2024 年 12 月 3 日星期二下午 5:00 之前到达日本陆上自卫队宇都宫校区航空学校会计部。 (6)联系信息1360 Kamiyokota-Machi,UTSUNOMIYA,TOCHIGI 321-0106有关竞标和合同有关的事项,请联系UTSUNOMIYYA校园的Aviation School的会计部门,请与校园相关。部门。电话:028-658-2151(分机535)负责人:与规格有关的事项的Yomota,请联系UTSUNOMIYA校园,航空管理团队(Ext。304)负责人(OGAKI)的人(7)位置。信息(URL:https://www.mod.go.jp/gsdf/kitautunomiya/index.html)C。JGSDF采购信息→“直接单位合同信息”,utsunomiya campus(url:https:/ https:/ https://wwwwwwwwww.mod.go.mod.go.mod.jpf/gsdf/gsntm cch/g。
音频和视频流内容将通过优化的地面或无线技术,通过集中式或区域性数据中心从云端交付。数据中心的布局旨在为内容存储、搜索、数字版权管理和向数百万订阅者进行流媒体交付提供规模经济。通过数据中心传输的数字内容数量庞大且种类繁多,使提供商能够经济地支持个性化内容。消费者和提供商都从中受益。消费者可以随时随地获得他们最感兴趣的内容的最佳价值。提供商受益于获得对这些交付模式感兴趣的有利可图的社会人口统计数据。此外,提供商在消费者层面获得业务和营销分析信息,并完全了解所选内容的类型。提供商可以使用这些数据进行有针对性的广告投放、相关商品和服务的交叉营销以及开发一系列新服务。
tl-ultralight.cz › prilohy › ke-stazeni PDF 2021年10月7日 — 2021年10月7日 带有 TL-ULTRALIGHT 品牌的飞机正在全球使用。每个型号都是单独设计的,并且...通过触摸屏自动驾驶。
按照本技术数据表中规格应用的计划R 140流的平整层归类为符合EN 13813标准的CT-C35-F7-A12。计划R 140流是一种固定的,可泵送的,快速的,自由的工业化合物,旨在作为最终佩戴层或带有轻型工业载荷的工业地板上的树脂涂料的底层,并且适合作为胶合面板和固体硬木地板的底层。计划R 140流量已准备就绪,通常不需要在接触交通负荷之前进行表面处理,但是由于暴露于化学负荷或出于美学原因,可能需要用合适的表面处理或树脂涂层覆盖。计划R 140流以灰色提供的粉末形式的自动呈现产品,由特殊的快速干燥和快速设定的粘合剂组成,特别是分级的沙子,聚合物和特殊的添加剂,并在Mapei自己的R&D实验室中开发了特殊的添加剂。与水混合时,计划R 140流量成为一种收缩补偿的自由诉讼化合物,具有良好的流量特性,易于施用,快速固化并与基板完美结合。计划R 140流量可以用手或泵混合并施加,并以3至40毫米的厚度散布在大型表面上。设置后,计划R 140流具有高水平的压缩力和弯曲强度以及对磨损的抵抗力。当达到规定的残留水分时,可以覆盖R 140的计划,具体取决于地板饰面的类型。
来自多个中心的大脑磁共振成像(MRI)数据通常在成像条件下表现出差异,例如所使用的核磁共振仪器的类型和随机噪声的存在。此外,MRI切片之间差距的差异进一步使数据的可用性复杂化了高级人工智能(AI)分析。基于深度学习的方法已成为解决挑战的实用解决方案。然而,现有的研究在很大程度上忽略了大脑MRI数据的增强,尤其是在面对明显的切片间隙时,例如在我们的临床大脑MRI切片中观察到的大约6 mM。响应这一研究差距,我们旨在开发新的方法来增强大脑MRI数据,重点关注更大的切片差距。为了实现这一目标,我们提出了SOFNET,它利用了基于光流和编码器 - 二次骨架的sofnet。我们模型的主要目标是插值MRI切片,同时保持特征一致性。利用光流法,与其他超分辨率算法相比,该方法表现出了出色的性能,我们提出的方法已在三个不同的大脑MRI数据集上进行了评估,并明确解决了4.2 mm和6.0 mm之间的差距。实验结果强调了SOFNET在生成适应的脑MRI数据方面获得的超分辨率质量的显着增强,超过了其他单位超级分辨率(SISR)方法。为了确保插值脑MRI切片的可信度,我们基于诸如峰值信噪比(PSNR)和结构相似性指数(SSIM)等指标(例如峰值信噪比(PSNR))对三个MRI进行了实验。这些实验证明了我们方法在将低分辨率MRI数据转换为清晰可靠的大脑MRIS中的有效性,从而可以使用AI技术进行了改进的分析。